
ENABLING RELIABLE AND EFFICIENT DATA TRANSFER
FOR INTERNET OF THINGS APPLICATIONS

BY

DI MU

M.S., New Jersey Institute of Technology, 2012
B.S., Hangzhou Dianzi University, 2010

DISSERTATION

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2021

© Copyright by Di Mu 2021

All Rights Reserved

Accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2021

July 7, 2021

Mo Sha, Chair and Faculty Advisor
Department of Computer Science, Binghamton University

Kyoung-Don Kang, Member
Department of Computer Science, Binghamton University

Yifan Zhang, Member
Department of Computer Science, Binghamton University

Yu Chen, Outside Examiner
Department of Computer Science, Binghamton University

iii

Abstract

We are now in the golden age of the Internet of Things (IoT) and various

IoT applications are being developed every day. Research efforts over the last

few decades produced multiple wireless technologies, which are readily available

to support communication between devices in various IoT applications. However,

it is very challenging to achieve reliable and energy-efficient data transfer through

wireless medium due to its inherent unreliability. The data transfer challenge is

significantly amplified by the uncertainties of network traffic and wireless envi-

ronments, the real-time requirement of data deliveries, the high mobility of IoT

platforms, and the high network management complexity. Fortunately, hetero-

geneous radios and new wireless technologies are becoming increasingly available

on modern IoT devices, offering new opportunities to address the data transfer

challenge. This dissertation presents my research that leverages those new oppor-

tunities to enable reliable and energy-efficient data transfer for IoT applications.

To address the uncertainties of network traffic and wireless environments, we de-

velop the Adaptive Radio and Transmission Power Selection (ARTPoS) system

that leverages multiple heterogeneous radios and selects the most suitable ra-

dio(s) and transmission power(s) for the current conditions and requirements. To

support real-time data deliveries, we develop the Real-time Radio Switching and

Bundling (RRaSB) system that runs on our embedded platform equipped with

iv

multiple heterogeneous radios and allows dynamic radio switching and bundling

among them. To accommodate the needs of mobile IoT platforms, we develop the

ShuttleNet system that collects real-time data from running vehicles based on the

Low-Power Wide-Area Network (LPWAN) technology and selects the network’s

physical-layer parameters at runtime. To reduce network management complexity,

we develop the Direct Message Dissemination (DIME) system that leverages the

Cross-Technology Communication (CTC) technique to efficiently time synchronize

wireless devices in the network and enable direct message deliveries through long

distance links instead of hop-by-hop transports. Real-world and testbed experi-

ments show that our designs provide significant improvements over the state of

the art.

v

Dedicated to my parents.

vi

Acknowledgements

The dissertation would not have been possible without the support, guidance,

and advice of my advisor and colleagues. I would like to first thank my advisor,

Dr. Mo Sha, for his patient guidance and unwavering support throughout my

doctoral research. Dr. Mo Sha has given me great support and valuable advice in

all aspects of my research. I also appreciate my dissertation committee members

Dr. Kyoung-Don Kang, Dr. Yifan Zhang, and Dr. Yu Chen for their important

feedback and guidance on my dissertation. I would also like to thank my colleagues

Junyang Shi, Xia Cheng, Yitian Chen, Xingjian Chen, Hyungdae Yi, Yunpeng Ge,

and Bin Wang for their dedicated work and assistance.

Important acknowledgements should be given to the organizations and people

that supported the research projects. I thank the faculty and staff in the Computer

Science Department, especially our IT specialists Mr. Robert L Mess and Mr.

Dave Hall who assisted us in deploying and maintaining the LoRa base station

and the wireless network testbed. I also thank the Transportation and Parking

Services at SUNY-Binghamton for offering the platform for LoRa end devices.

My research was partially supported by the NSF through grant CRII-1657275

(NeTS). The Graduate School and the Graduate Student Employees’ Union at

SUNY-Binghamton provided travel funds for conferences.

Last but not least, I would like to thank my family for their constant encour-

agement and understanding.

vii

Contents

List of Tables xi

List of Figures xiv

1 Introduction 1

2 Related Work 4
2.1 Runtime Radio Selection and Transmission Power Control 4
2.2 Energy-Efficient Real-Time Data Transfer Using Heterogeneous Ra-

dios . 6
2.3 Long-Range Vehicular Data Collection and Spreading Factor Control 7
2.4 Industrial Wireless Network Management 9

3 Robust Optimal Selection of Radio Type and Transmission Power
for Internet of Things 12
3.1 Introduction . 12
3.2 ARTPoS System Architecture . 15

3.2.1 Modeling Engine . 17
3.2.2 Radio/Transmission Power Selection Engine 21
3.2.3 Radio Controllers and User Interface 22

3.3 Modeling . 22
3.3.1 Power Consumption Modeling 23
3.3.2 Link Reliability (PRR) Modeling 26

3.4 Optimization . 29
3.4.1 Problem Formulation . 29
3.4.2 Study on the Impact of Uncertainties 32
3.4.3 Fast Online Optimization (ARTPoS) 34
3.4.4 Online Optimization with Insitu Refinement of PRR Models

(ARTPoS-irp) . 40
3.5 Evaluation . 42

3.5.1 Micro-Benchmark Experiments 43
3.5.2 Impact on Power Consumption and Link Reliability 45

3.6 Conclusion and Future Work . 52

4 Radio Selection and Data Partitioning for Energy-Efficient Wire-
less Data Transfer in Real-Time IoT Applications 54
4.1 Introduction . 54
4.2 Problem Formulation . 57
4.3 Algorithm Design . 60

4.3.1 RT-Select Algorithm for Selection between Two Radios . . . 61

viii

4.3.2 RT-Select-General Algorithm for Selection among Multiple
Radios . 63

4.3.3 RT-Balance Algorithm for Runtime Traffic Balancing 65
4.4 System Design and Implementation 69
4.5 Evaluation . 70

4.5.1 Time Efficiency of RT-Select-General 73
4.5.2 Effectiveness of Link Condition Predictors 73
4.5.3 Experiments with Two Radios 74
4.5.4 Experiments with Five Radios 78
4.5.5 Large-Scale Simulation Study 82

4.6 Conclusion . 84

5 Runtime Control of LoRa Spreading Factor for Campus Shuttle
Monitoring 86
5.1 Introduction . 86
5.2 Background . 88
5.3 ShuttleNet . 91

5.3.1 Hardware Deployment . 91
5.3.2 Software Architecture . 93
5.3.3 Time Frame and Channel Assignment 94

5.4 An Empirical Study on SF Configuration 96
5.5 Runtime SF Control . 100

5.5.1 Overview of the Solution . 100
5.5.2 KNN-based SF Selector . 101
5.5.3 KNN Voting Threshold Adjustment 105

5.6 Evaluation . 106
5.6.1 Impact of Initialization Period Length 107
5.6.2 Sharing the Initial Data among Shuttles 109
5.6.3 Effectiveness of our Runtime SF Control Solution 109
5.6.4 Time Efficiency of our Runtime SF Control Solution 113

5.7 Conclusion . 114

6 DIME: Direct Message Dissemination for Industrial Wireless Net-
works via Cross-Technology Communication 116
6.1 Introduction . 116
6.2 Background . 118
6.3 Design of DIME . 120

6.3.1 System Overview . 120
6.3.2 DIME-MAC . 122
6.3.3 Scheduling of DIME . 125

6.4 Evaluation . 127
6.4.1 Experimental Setup . 127
6.4.2 Performance at High Data Rate 129
6.4.3 Performance at Low Data Rate 131
6.4.4 Performance at Network Initialization 134

6.5 Conclusion . 136

7 Conclusion 138

ix

References 140

x

List of Tables

5.1 Price List of Hardware Components 93

xi

List of Figures

3.1 System architecture. 16
3.2 Radio power consumptions when WiFi and ZigBee turn on respec-

tively and transmit at the maximum speed. The traces are mea-
sured by a Monsoon power meter [62]. In boxplot, central red mark
in box indicates median; bottom and top of box represent the 25th
percentile (q1) and 75th percentile (q2); crosses indicate outliers
(x > q2 + 1.5 · (q2− q1) or x < q1− 1.5 · (q2− q1)); whiskers indicate
range excluding outliers. 18

3.3 Regression plots of PRR as functions of radio transmission settings;
PRR data segregated into poor, low, medium, and high states. . . . 28

3.4 Offline study (without smoothing measures or regression models):
Top: Optimal transmission power settings of WiFi and Zigbee when
operating together; Bottom: success (= 1) or failure (= 0) in meet-
ing the “data-rate/goodput” ratio constraint for different distance
and data rate combinations. 33

3.5 WiFi PRR Models: showing how the offline trained model gets
updated online in response to new PRR data that deviate from the
offline fits . 42

3.6 CDF of the time duration for ARTPoS and ARTPoS-irp to deter-
mine the optimal radio and transmission power. 43

3.7 Radio activities when the WiFi controller manages packet trans-
mission in a 10s period; averaged power consumption over the first
three time periods, T1 → T2, T2 → T3 and T3 → T4, respectively
are 2.09mW , 2.61mW and 2.03mW 44

3.8 Power consumption and PDR differences between our approaches
(ARTPoS and ARTPoS-irp) and the baselines (Fixed-power, ART-
WiFi and ART-ZigBee) at different data rates. 45

3.9 Power consumption and PDR comparison between our approaches
(ARTPoS and ARTPoS-irp) and the baselines (Fixed-power, ART-
WiFi and ART-ZigBee) at different locations. 48

3.10 Power consumption and PDR comparison between our approaches
(ARTPoS and ARTPoS-irp) and the baselines (Fixed-power and
ART-WiFi) with and without interference. 49

3.11 Radio power consumption and PDR traces of three transmitters for
30 periods. 50

4.1 Throughput prediction errors. The deadline misses are marked in
red. 66

4.2 System architecture and the platform supporting five radios. 70

xii

4.3 Execution time of RT-Select-General compared with GreenBag and
GLPK. 72

4.4 Throughput and ETX predictions vs. ground truth in a 120-second
WiFi link condition trace. 72

4.5 Performance under RT-Select and GreenBag with two radios when
the application transmits at a fixed data rate with different deadlines. 74

4.6 Performance under RT-Select and GreenBag with two radios when
the application transmits at different data rates with the same dead-
line. 76

4.7 Performance of GreenBag, RT-Select, and RT-Balance with two
radios when the application transmits at a fixed data rate with
different deadlines. 78

4.8 Performance of GreenBag, Optimal and RT-Select-General solu-
tions with five radios when the application transmits at a fixed
data rate with different deadlines. 79

4.9 Performance of GreenBag, Optimal, and RT-Select-General with
five radios when the application transmits at different data rates
with the same deadline. 81

4.10 Performance of GreenBag, RT-Select-General, and RT-Balance with
five radios when the application transmits at a fixed data rate with
different deadlines. 83

4.11 Radio energy comparisons with five radios at various combinations
of traffic demands and deadlines. The grey shaded areas denote the
invalid combinations that the optimal deadline miss ratio is higher
than 5%. The colors in each subfigure denote the percentages of
more energy consumed than Optimal, i.e., (E(RT Select General)−
E(Optimal))/E(Optimal) and (E(GreenBag)−E(Optimal))/E(Optimal),
respectively. 83

5.1 Hardware deployment of ShuttleNet at the State University of New
York (SUNY) at Binghamton. 90

5.2 Campus shuttle route. 92
5.3 Software architecture of ShuttleNet. 93
5.4 An example timeline of transmissions on different channels within

two consecutive time frames in ShuttleNet. 95
5.5 Link performance when the LoRa transmitters use different SF con-

figurations. 97
5.6 The link reliability changes under ADR (window = 20,margin =

10dB) when a shuttle circles the campus twice. The grey areas
indicate the time when the shuttle stopped. 98

5.7 Initialization Period and Operation Period. 100
5.8 Performance when using the Initial Data Set with different sizes.

Performance is normalized to the one using the optimal selections. . 107
5.9 Performance when using the Initial Data Set collected from one

shuttle on another. Performance is normalized to the one when
using the initial data collected from the same shuttle. The Initial
Data Set includes one loop of data. Rr = 0.8. 108

5.10 Performance under different application reliability requirements. . . 110

xiii

5.11 Performance comparisons between our solution and three baselines.
Performance is normalized to the one using the optimal selections. . 112

5.12 The execution time of SF selections on a Raspberry Pi computer. . 113

6.1 Software architecture of DIME. 121
6.2 The structure of a CTC timeslot. 122
6.3 Testbed deployment with 8 data flows. The data flow numbers are

marked at the source and destination nodes. 128
6.4 Performance comparison under the high data rate setting. 130
6.5 Network performance over 24 hours under the high data rate setting.132
6.6 Performance comparison under the low data rate setting. 133
6.7 Network performance over 24 hours under the low data rate setting. 135
6.8 Network performance at startup. 136

xiv

1 Introduction

We are now in the golden age of the Internet of Things (IoT) and various

IoT applications are being developed every day. Research efforts over the last

few decades produced multiple wireless technologies, which are readily available

to support communication between devices in various IoT applications. However,

it is very challenging to achieve reliable and energy-efficient data transfer through

wireless medium due to its inherent unreliability. The data transfer challenge is

significantly amplified by the uncertainties of network traffic and wireless envi-

ronments, the real-time requirement of data deliveries, the high mobility of IoT

platforms, and the high network management complexity. Failing to achieve reli-

able and energy-efficient data transfer may result in degraded Quality of Service

(QoS), extra maintenance cost, or safety hazard. Fortunately, heterogeneous ra-

dios and new wireless technologies are becoming increasingly available on modern

IoT devices, offering new opportunities to address the data transfer challenge.

Most current IoT applications use a single wireless technology to support data

transfer. However, each wireless technology is originally designed with different

goals, such as high throughput, low power consumption, and robustness to in-

terference. Using a single wireless technology therefore cannot deliver optimal

performance under varying network traffic and/or changing wireless environment.

To adapt to the uncertainties of network traffic and wireless environment, we

1

develop the Adaptive Radio and Transmission Power Selection (ARTPoS) system

that leverages multiple heterogeneous radios and selects the most suitable radio(s)

and transmission power(s) for the current conditions and requirements [1, 2].

The importance of real-time wireless data transfer is increasing for IoT appli-

cations in recent years, demanding real-time and energy-efficient communication

through wireless medium. However, it is challenging to support stringent timing

constraints energy-efficiently through wireless medium due to its inherent unreli-

ability and timing-unpredictability. To support real-time data deliveries energy-

efficiently, we develop the Real-time Radio Switching and Bundling (RRaSB) sys-

tem that runs on our embedded platform equipped with multiple heterogeneous

radios and allows dynamic radio switching and bundling among them based on

our real-time radio selection and data partitioning algorithms [3, 4].

Recently, the Low-Power Wide-Area Network (LPWAN) technologies, such as

LoRa, have been used as low-cost alternatives that provide the capability of long-

range data collection, in replace of satellite and cellular technologies that have

been traditionally used. However, the mobility of IoT platforms (e.g., running

vehicles) poses a significant challenge to make good tradeoffs between network

reliability and throughput under the fluctuations of link quality resulting from the

mobility. To support mobile IoT platforms on LoRa-based wireless networks, we

develop a campus shuttle monitoring system, namely ShuttleNet, which collects

real-time data from running vehicles through LoRa links and controls the network’s

physical-layer parameters at runtime based on the current link conditions [5].

Industrial wireless networks, which typically connect sensors, actuators, and

controllers in industrial facilities, have critical demands for reliable and real-time

2

communication. However, those networks often suffer high network management

complexity due to a large number of network devices and a mesh network topology.

To reduce the network management complexity, we develop the Direct Message

Dissemination (DIME) system that leverages the Cross-Technology Communica-

tion (CTC) technique to efficiently time synchronize wireless devices in the net-

work and enable direct message deliveries through long distance links instead of

hop-by-hop transports.

The rest of the dissertation is organized as follows. Chapter 2 reviews the

related work. Chapter 3 introduces our design of ARTPoS. Chapter 4 presents our

RRaSB system. Chapter 5 presents our ShuttleNet system. Chapter 6 discusses

our design of DIME. Chapter 7 concludes this dissertation.

3

2 Related Work

2.1 Runtime Radio Selection and Transmission Power Con-

trol

In recent years, heterogeneous radio technologies are advancing fast and many

new IoT platforms are equipped with multiple heterogeneous radios. Bandwidth

aggregation for a device with multiple network interfaces has been studied exten-

sively in the literature and many techniques are readily available [6]. For instance,

multipath TCP (MPTCP) [7] is one of the most widely used techniques and now a

new standardized transport protocol that allows a device to take advantage of data

transfer through multiple network interfaces simultaneously. Those early efforts

are not directly applicable to embedded wireless devices with power constraints,

since they were not designed to provide energy-efficient wireless data transfers [8,

9]. There has also been increasing interest in studying the energy-aware bundling

or switching between WiFi and 3G/4G radios on smartphones [10, 11]. For in-

stance, Bui et al. used WiFi and/or LTE to minimize playback halts due to the

buffer underflow when a video is streamed to a smartphone [11]. There exists soft-

ware, e.g., VideoBee, Super Download Lite-Booster, MPTCP in iOS, KT’s GiGA

LTE, that support concurrent use of WiFi and cellular radios. These existing

approaches are either unaware of transmission power control or limited to mainly

WiFi and 3G/4G radios on smartphone platforms, thus they are not directly ap-

4

plicable to support energy-efficient data transfer using heterogeneous radios in

various IoT embedded platforms. Generally speaking, it is largely unknown how

to energy-efficiently use radios with very different characteristics through runtime

radio and transmission power adaptation. To address this critical gap in the cur-

rent state of the art, we investigate the joint impact of radio and transmission

power selection on energy efficiency and link reliability, and propose a practical

approach that intelligently uses a high throughput radio (i.e., WiFi) and an energy-

efficient radio (i.e., ZigBee) in Chapter 3. To our knowledge, our ARTPoS system

is the first to support not only runtime bundling and switching between WiFi and

ZigBee but also adaptive transmission power control, that proactively minimizes

power consumption subject to given network traffic and operating conditions.

Transmission power control for a single radio has been extensively investigated

in the literature of wireless sensor networks and wireless mesh networks. Indirect

link quality metrics such as received signal strength (RSS) and link quality indi-

cator (LQI) [12, 13] or direct link quality metrics such as packet reception ratio

(PRR) and packet error rate (PER) [14, 15] have been used to measure the link

quality. Heuristics [14, 16, 17] and control-theoretic approaches [13, 12, 15] have

been applied to achieve the desirable link quality by controlling the transmission

power at runtime. These existing approaches, designed to select the transmission

power of a single radio, are not directly applicable for heterogeneous radios, since

the power consumption has to be compared between different radios and the link

quality and power consumption of multiple radios have to be jointly considered. In

contrast, ARTPoS employs a pragmatic integrated systems approach to optimize

the transmission power selection together with the radio selection.

5

2.2 Energy-Efficient Real-Time Data Transfer Using Het-

erogeneous Radios

More recently, research efforts have begun to pay more attention to the energy

efficiency of data transfers using heterogeneous radios in the context of smart-

phones and IoT applications. For instance, Lim et al. extended MPTCP to

support energy-aware data transfers over WiFi and LTE radios [18]. Nikraves

et al. conducted a real-world study of multipath for mobile settings and devel-

oped a flexible software architecture to enhance the performance of MPTCP on

smartphones [8]. Nika et al. developed an energy model for smartphones to sup-

port energy-aware WiFi and LTE radio bundling [19]. Wu et al. designed an

energy-efficient WiFi and LTE bandwidth aggregation method for video services

on mobile devices [20]. Gu et al. developed a low-power out-of-band control plane

based on LoRa for multi-hop ZigBee networks [21]. These existing approaches are

either unaware of the timing constraints of data deliveries or limited to only WiFi

and 3G/4G radios on smartphone platforms, thus they are not directly applica-

ble to support real-time data transfer using heterogeneous radios in various IoT

embedded platforms.

For real-time wireless data deliveries, novel methods (e.g., [22, 23, 24]) have

recently been explored to meet timing constraints via real-time MAC protocols,

packet scheduling, and routing based on the centralized Time Division Multiple

Access (TDMA) scheme. However, most of them consider neither energy efficiency

nor heterogeneous radios. In contrast to these real-time approaches, we propose

our RRaSB system in Chapter 4 that aims to support stringent timing constraints

with minimal energy consumption by effectively leveraging heterogeneous radios.

6

Our work is therefore orthogonal and complementary.

2.3 Long-Range Vehicular Data Collection and Spreading

Factor Control

Satellite and cellular technologies are traditionally used to collect real-time

data from moving vehicles through long-distance links. For instance, vehicu-

lar satellite links have been used to connect emergency vehicles to information

headquarters in disaster areas [25], while LTE-based communication systems have

been integrated into the urban transit systems [26, 27]. LTE-based vehicle-to-

everything (V2X) communication is currently being standardized by 3GPP [28].

Unfortunately, those satellite or cellular based systems are often very costly be-

cause they use expensive devices and licensed frequency bands, which limits their

applications. In recent years, LoRa, which is an emerging Low-Power Wide-Area

Network (LPWAN) technology, has been used as a low-cost alternative that pro-

vides the capability for long-range data collection to low data rate applications.

For instance, Islam et al. proposed a LoRa link scheduling algorithm and tested

it in city environments [29]. Liando et al. conducted large-scale measurements

on the performance of a campus-wide LoRa network and studied the impact of

LoRa transmission parameters on link performance [30]. More recently, LoRa has

been employed to support vehicular communication. For example, Santa et al.

developed a LoRa-based vehicular monitoring platform [31]. Salazar-Cabrera et

al., Boshita et al., and Guan et al. presented prototypes of public vehicle tracking

systems that use LoRa to transfer the real-time locations and operating condi-

tions of vehicles [32, 33, 34]. Bertoldo et al. deployed LoRa end devices on public

7

transportation vehicles to transfer environmental sensor readings [35]. Ouya et al.

proposed a LoRa-based communication protocol that allows electric vehicles and

charging stations to exchange information on energy demand and availability [36].

The existing studies have demonstrated the feasibility of using LoRa to reliably

collect data over long distances. The spreading factor (SF), which is a physical

layer parameter of LoRa that determines the transmission data rate, plays an

important role in the tradeoff between the reliability and throughput of the data

collection from running vehicles. As presented in Chapter 5, our yearlong empir-

ical study provides valuable insights on selecting SF configurations for the LoRa

end devices with mobility. To our knowledge, our ShuttleNet system is the first

to investigate the SF selection for LoRa end devices installed on running vehicles,

distinguished from previous work using static SF configurations.

In the literature, several approaches have been proposed to configure SF for

LoRa networks based on link quality. For instance, the ADR algorithm, specified

in LoRaWAN, estimates the link quality using the maximum SNR in 20 historical

samples and selects the SF configuration based on the required SNR for each

SF [37]. ADR+ is an enhanced version of ADR which replaces the maximum SNR

with the average SNR to estimate the link quality [38]. The Probing algorithm

makes use of the measured PRR to configure SF and gradually approaches the

optimal configuration [39]. Unfortunately, those SF control approaches designed

for stationary LoRa end devices do not work well for mobile devices. In Chapter 5,

our runtime SF control solution significantly outperforms the existing solutions.

There also exist some approaches that estimate the link quality and select the

SF configuration based on the GPS locations of LoRa end devices [40, 41, 42].

8

However, those GPS-based approaches significantly increase the system cost and

power consumption of LoRa end devices. Our experimental results of ShuttleNet

show that the measured link characteristics can be used reliably to select good SF

configurations and there is no need to install those GPS devices.

KNN is a classical machine learning technique that uses the nearest neighbors

in the collected data set to determine the class or value of a query example [43].

KNN has been demonstrated as an efficient and effective algorithm when applied

to solve many wireless communication problems. For instance, Yu et al. and Arya

et al. used KNN for indoor and outdoor localization based on RSS measurements,

respectively [44, 45]. Li et al. employed KNN to detect network intrusions in

Wireless Sensor Networks (WSNs) [46] while Pan et al. used KNN to estimate

the missing data during data transfers in WSNs [47]. Donohoo et al. used KNN

to predict the energy demand of mobile devices [48]. Ma et al. employed KNN

to predict the PRR of 802.11 links based on SNR measurements [49]. To our

knowledge, ShuttleNet is the first to use KNN to select SF configuration for mobile

LoRa end devices. Our experimental results demonstrate the effectiveness and

efficiency of our proposed solution.

2.4 Industrial Wireless Network Management

In 2012, IEEE 802.15.4e introduced Time-Slotted Channel Hopping (TSCH) [50],

which is a Medium Access Control (MAC) protocol in the context of Low-Power

and Lossy Networks (LLNs). Industrial wireless networks employ TSCH to provide

time-deterministic packet deliveries for industrial process control and automation.

TSCH networks are globally time synchronized to support time-slotted access. Pe-

9

riodic synchronization beacons are propagated from the coordinator node to every

node in the network through hop-by-hop transports. However, TSCH networks

often suffer high network management complexity due to a large number of net-

work nodes and a mesh network topology. For example, every TSCH node needs

to transmit a synchronization beacon periodically, which is a significant network

management overhead. Also, TSCH networks often take a long time at startup to

synchronize the entire network and stabilize the network performance.

Research efforts in recent years have proposed autonomous scheduling solu-

tions for TSCH-based mesh networks, which aim to enhance the scalability of

those networks by removing the centralized scheduler. For instance, Orchestra [51]

allows TSCH nodes to maintain their schedules autonomously based on the state

of the routing protocol. ALICE [52] is an autonomous link-based cell scheduling

scheme which allocates a unique cell for each directional link by using the local

information in the routing layer. DiGS [53] is a distributed graph routing and au-

tonomous scheduling solution that allows the field devices to compute their own

transmission schedules based on the graph routes. However, these efforts cannot

completely resolve the issue of high network management complexity, since the

deliveries of critical network management data, such as time information, control

commands, and urgent alerts, still rely on hop-by-hop transports and thus may

suffer insufficient reliability and undesirable latency.

Emerging LPWAN technologies, such as LoRa, offer new opportunities to ad-

dress the high network management complexity by using one-hop long-distance

links. The LoRaCP system [21] features one-hop out-of-band control planes to

deliver control messages in ZigBee mesh networks based on additional LoRa ra-

10

dios. However, adding new radio modules to existing hardware platforms may in-

crease the cost and complexity of deployment and maintenance. Fortunately, new

Cross-Technology Communication (CTC) techniques have enabled direct messag-

ing from an LPWAN radio to 802.15.4-based field devices without any hardware

change on the field devices. For instance, Shi et al. proposed two physical-layer

CTC approaches to enable ZigBee devices to decode the information carried by

LoRa transmissions in the 2.4 GHz and Sub-GHz bands [54, 55]. In Chapter 6,

we propose the DIME system that leverages the long-distance links provided by

the CTC technique to overcome the high management complexity in TSCH-based

autonomously scheduled networks. Our work is therefore orthogonal and comple-

mentary.

11

3 Robust Optimal Selection of Radio Type and

Transmission Power for Internet of Things

3.1 Introduction

Diverse wireless technologies, produced by research over the years, are available

to support communication between devices in various Internet of Things (IoT)

applications. However, each of these technologies were originally designed with

different goals, such as high throughput, low power consumption, low latency,

and robustness to interference, and thus offer very different characteristics. Single

radio technology can hardly deliver optimal performance in all desirable quality

of service (QoS) dimensions, especially under varying environmental conditions.

For instance, WiFi can provide high throughput, but suffers from high power

consumption. A considerable amount of energy can be wasted if a WiFi radio

experiences irregular data transmission at low data rate such that it stays longer

in a power-hungry active mode, rather than in the power save mode. On the other

hand, ZigBee is power-efficient, but cannot support high data rate applications.

Using a single wireless technology therefore cannot meet the demands of vary-

ing workloads or changing environmental conditions. This issue becomes further

pronounced with emerging mobile IoT applications that involve placing embed-

ded devices on the user’s body or other mobile objects. Monitoring and control-

ling mobile objects open up opportunities for novel and exciting IoT applications

12

(e.g., assisted living, health monitoring, and multi-agent autonomous vehicular

and robotic systems), while also introducing the fundamental challenge of main-

taining optimal wireless communication between devices under the following un-

certainties: Network Traffic Uncertainties: The network traffic is subject to

spontaneous changes. For instance, in a health monitoring application, a wearable

device may produce low amount of data during some hours of the day, but sporad-

ically require rapid transmission of large volume of data in response to a critical

medical condition. Moreover, devices may have multiple sensors, with diverse traf-

fic patterns, and the system may turn ON or OFF any of the sensors at any given

time [56]. Wireless Environment Uncertainties: The wireless environment

changes when the device moves around. At times, a mobile device will need to be

able to deal with a highly noisy environment; at other times it may enjoy a clean

environment [56]. A stationary device may also experience environment changes

due to changing ambient interference. Given the dynamic nature of communica-

tion in IoT applications, a traditional one-radio-fits-all approach cannot meet the

challenges associated with the dynamics and uncertainties in network traffic and

operating conditions.

Fortunately, embedded system hardware and radio technologies have been see-

ing appreciable advancement. Heterogeneous radios, e.g., WiFi, LTE, Bluetooth,

and ZigBee are becoming increasingly available in modern embedded or mobile

devices. Most smartphones nowadays support WiFi, LTE, and Bluetooth. A ma-

jority of modern devices designed for IoT applications also support heterogeneous

radios. For instance, Firestorm platform [57] supports Bluetooth low energy (BLE)

and ZigBee and uses a 32 bit low-power microcontroller with the duty cycling ca-

13

pability. TI CC2650 [58] integrates two radios (i.e., ZigBee and BLE) on a single

chip. Raspberry Pi 3 model B [59] uses a Broadcom single-chip radio supporting

both WiFi and BLE. IOT-Gate-iMX7 [60] is an industrial IoT gateway, which

supports 4G/LTE, WiFi, Bluetooth, and Zigbee. The ZiFi device [61] support

both WiFi and ZigBee. Recent hardware advancement offers new opportunities

to use multiple wireless technologies efficiently.

This chapter aims to address the previously stated networking challenges, while

leveraging the above-stated hardware advancements; specifically, it makes the fol-

lowing contributions:

• We design the Adaptive Radio and Transmission Power Selection (ARTPoS)

system that makes available multiple wireless technologies at runtime and

selects the radio(s) and their transmission power(s) that are best suited for

the current network traffic and operating conditions.

• We develop new offline modeling approaches that allow the selection sys-

tem to adapt to large variance in power consumption and link reliability

measurements.

• We formulate the problem of radio and transmission power selection as an

optimization problem1 and develop two practical (lightweight) online solu-

tions; the latter solution uniquely allows online updating of the link reliabil-

ity models, to enable adapting to runtime environments that deviate from

the offline settings that were used to train the models.

• We implement the ARTPoS in Raspbian Linux and Contiki and evaluate

1We focus on minimizing the energy consumption on the link level and the sender side (IoT
end devices), since the IoT gateways are usually not or much less energy-constrained.

14

it on a new embedded platform supporting WiFi, ZigBee, and BLE; these

efforts demonstrate the unique benefits of adaptive runtime selection of

radios and their transmission powers.

We show that our ARTPoS implementations clearly outperform two baselines

(Fixed-power and ART-WiFi) in terms of power consumption, while delivering

similar link reliability. Expectedly, ART-ZigBee registers the lowest power con-

sumption, but fails to provide any meaningful link reliability for all data rates

above 1000 packets/period. Importantly, this advantage of the ARTPoS imple-

mentations is shown to hold under various indoor and outdoor settings, and with

and without interference. Lastly, we show that the newer ARTPoS-irp version

is able to exploit its special (runtime) model adaptation capacity to provide, on

average, a 3.7% better packet delivery rate and 13.5mW power savings, over the

original ARTPoS implementation.

The remainder of the chapter is organized as follows. Section 3.2 introduces

our ARTPoS design. Section 3.3 presents the power consumption and link relia-

bility modeling and Section 3.4 introduces our problem formulation and solution

strategy. Section 3.5 presents our experimental evaluation. Section 3.6 concludes

the chapter.

3.2 ARTPoS System Architecture

This section presents the design of ARTPoS. Fig. 3.1 shows the system ar-

chitecture. The Modeling Engine generates the power consumption and link

reliability models needed for the radio and transmission power selection (Sec-

tion 3.2.1). The Radio/Transmission Power Selection Engine selects the

15

Radio/Transmission Power Selection Engine

BLE PHY802.11 PHY

BLE MAC802.11 MAC

libpcap

 Raspbian Linux Contiki

UART
Interface

Link Reliability
Model

Distance
Sample

Generator

Send Receive

Modeling
Engine Model Container

Power
Consumption

Model

Link Monitor

WiFi Controller

Link Monitor

BLE Controller

HCI tools

802.15.4 PHY

Link Monitor

ZigBee Controller

UART
Interface

Predictor

Optimizer

Classifier

Lookup Table

User
Interface

Send Receive

Send Receive

Figure 3.1: System architecture.

best-suited radio(s) and transmission power(s) based on the application specified

data rate and the throughput of each available link measured at runtime (Sec-

tion 3.2.2). Multiple Radio Controller modules (e.g., WiFi, BLE, and ZigBee

controllers) exist in ARTPoS. Each radio controller controls the state (i.e., On or

Off) of a radio and sets its transmission power based on the decision made by the

Radio/Transmission Power Selection Engine, while the User Interface supports

the interactions with system users (Section 3.2.3).

To support the realization of ARTPoS, we have built a new embedded plat-

form (as shown in Fig. 3.1) with heterogeneous radios consisting of WiFi, ZigBee,

and BLE by instrumenting a Raspberry Pi 3 Model B [59] with a TI CC2650

Development Kit [58], which is connected to the Raspberry Pi through a USB

port. Raspberry Pi integrates a Broadcom BCM43438 single chip radio processor

supporting WiFi and BLE, while CC2650 is the core wireless MCU supporting

ZigBee and BLE on CC2650 Development Kit (currently, we use the BLE radio

on Raspberry Pi since the Contiki has not yet implemented the BLE stack in its

16

master branch). The integrated emulator (XDS100v3) on the CC2650 Develop-

ment Kit enables the communication between the Raspberry Pi and the CC2650

MCU through UART. To power the device, we use a USB battery to which a

Monsoon power meter [62] is connected to measure the power consumption.

We have realized ARTPoS in Raspbian Linux [63], a Debian based Linux sys-

tem for Raspberry Pi, and Contiki [64], an operating system for low-power wireless

IoT devices. To support WiFi, our ARTPoS implementation adopts the 802.11

MAC and physical layer implementations provided by the Linux kernel and em-

ploys the libpcap library for sending and receiving packets to/from the MAC layer.

Similarly, our implementation adopts the Linux’s BLE implementations and HCI

tools to support BLE and uses the 802.15.4 physical layer implementations in

Contiki to support ZigBee. Our implementation also adopts the existing UART

implementations in Raspbian and Contiki to support the communication between

Raspberry Pi and CC2650. In Fig. 3.1, the existing implementations in Raspbian

Linux and Contiki adopted by ARTPoS are marked with dash lines, while our new

designs are marked with solid lines. WiFi controller, BLE controller, and ZigBee

controller are three radio controllers that control WiFi, BLE, and ZigBee radios,

respectively. We intentionally implement all modules except the ZigBee Controller

in Raspbian Linux, since Raspberry Pi has richer hardware resources. The design

of the major modules in ARTPoS are discussed next.

3.2.1 Modeling Engine

The Modeling Engine generates the power consumption model and link reli-

ability model to support runtime radio and transmission power selection. Most

existing solutions for transmission power control for a single radio use a simple

17

(a) Boxplot of WiFi at 1 dBm to 21 dBm.

(b) A 5-second trace of WiFi at 1 dBm.

(c) Boxplot of ZigBee at -21 dBm to 5 dBm.

(d) A 5-second trace of ZigBee at 1 dBm.

Figure 3.2: Radio power consumptions when WiFi and ZigBee turn on respectively
and transmit at the maximum speed. The traces are measured by a Monsoon
power meter [62]. In boxplot, central red mark in box indicates median; bottom
and top of box represent the 25th percentile (q1) and 75th percentile (q2); crosses
indicate outliers (x > q2 +1.5 ·(q2−q1) or x < q1−1.5 ·(q2−q1)); whiskers indicate
range excluding outliers.

18

power model assuming that using a lower transmission power level leads to lower

power consumption. However, this simple model no longer works for a device

with multiple radios since the power consumptions have to be compared between

different radios. Hence, our Modeling Engine is designed to take real power con-

sumption traces as input and generate power models accordingly. As an example,

Fig. 3.2 shows the radio power consumptions when the WiFi and ZigBee radios on

our embedded platform turn on respectively and transmit at the maximum speeds

at all available transmission power settings. As shown in Fig. 3.2(a), the median

power consumption increases from 789mW to 905mW to 1269mW when WiFi is

on and the transmission power increases from 1dBm to 19dBm to 21dBm, while

the median power consumption increases from 11.9mW to 18.5mW to 30mW

when ZigBee is on and the transmission power increases from -21dBm to 0dBm

to 5dBm as shown in Fig. 3.2(c). Large variances can be seen in the boxplot in

Fig. 3.2(b) and Fig. 3.2(d), which show the 5-second power measurements when

WiFi and ZigBee transmit at 1dBm, respectively. The large variance is caused by

the power consumption differences when the radio hardware is at different states,

making the first statistical moments (e.g., mean or median) unsuitable to estimate

the radio power consumption.

The Modeling Engine also generates the link reliability model based on the

PRR measurements at difference distances between the sender and the receiver,

and when the sender transmits at different transmission power. PRR can be de-

fined as the fraction of transmitted packets successfully received by the receiver.

Our Modeling Engine provides a feature that controls each radio to transmit pack-

ets using a single transmission power, then proceeds to the next power in a round

19

robin fashion. With this feature, the PRR measurements for all radios and trans-

mission powers can be done automatically at each distance. However, changing

the distance between the sender and receiver has to rely on human operators,

introducing labor-intensive measurement overheads. Therefore, it is important to

use a frugal set of distance samples that will produce a training data set suitable

for effective (subsequent) model development.

Therefore, the Distance Sample Generator is designed to generate suit-

able distance samples based on a feasible communication range and the desired

number of distance samples. The desired number of distance samples is decided

by the total time allowed for PRR measurements divided by the measurement

execution time at each distance. A statistical design of experiments approach,

commonly used in Engineering optimization, is employed to generate the distance

samples. For instance, the communication range considered, 0− 200m (based on

our observed maximum communication range of WiFi/ZigBee/BLE), is divided

into three zones. Zone 1, 0 < x ≤ 30m, corresponds to the spatial range in typical

home or office-space IoT applications, where a low-power radio like ZigBee is seeing

increasing popularity; Zone 2, 30 < x ≤ 100m, corresponds to the spatial range in

typical commercial/residential buildings as well as factories and warehouses (i.e.,

industrial IoT or IIoT applications) where ZigBee becomes progressively less ef-

fective, and WiFi is expected to become more dominant; and Zone 3, x > 100m,

corresponds to the spatial range (typical of emerging cloud robotic and multi-robot

applications) where WiFi with greater range capacity will typically dominate. In

each of these ranges, we use the Latin hypercube sampling (LHS) method to gen-

erate 10 distance samples. LHS is a popular approach to generate near-random

20

samples that can provide a relatively uniform coverage of an input space or a

probability space [65]. Unlike factorial design or simple Monte Carlo simulations,

the size of the sample set yielded by LHS does not scale exponentially with the

number of input parameters, thereby making LHS more suitable to design frugal

set of experiments (as needed here). A LHS containing n sample points (between

0 and 1) over m dimensions is a matrix of n rows and m columns. Each row cor-

responds to a sample point. The values of n points in each column are randomly

selected, one from each of the intervals, (0, 1/n), (1/n, 2/n), . . . , (1 − 1/n, 1). We

use the optimal LHS implementation, which maximizes the minimum Euclidean

distance between the samples [66]. To demonstrate the PRR measurement pro-

cess, we collect a series of PRR traces by varying the distance between the sender

and receiver following the 30 distance samples generated by LHS. Section 3.3.2

will discuss the method that is used to train models of PRR as functions of the

respective radio transmission power settings based on our collected PRR traces.

3.2.2 Radio/Transmission Power Selection Engine

The Radio/Transmission Power Selection Engine implements ARTPoS core logic.

It is designed to facilitate the identification of the best-suited radio(s) and trans-

mission power(s) at runtime. The Model Container stores the power consump-

tion model and link reliability model generated by the Modeling Engine. With

these two models, the Optimizer selects the best radio (or a set of radios) and

their optimal transmission power(s) based on the application specified data rate

and the throughput of all available links measured by the radio controllers. Sec-

tion 3.4 will discuss the problem formulation and optimization in detail.

21

3.2.3 Radio Controllers and User Interface

The Radio Controllers are important design constructs of ARTPoS. Their main

purpose is to forward data packets between the application and the radio stacks.

The Radio Controllers are responsible for switching on the radio(s) selected by the

Radio/Transmission Power Selection Engine, keeping the unselected radio(s) off,

applying the selected transmission power(s), and routing data packets between the

application and the radio stack(s) of the selected radio(s). The Link Monitor

gathers the runtime link statistics (i.e., throughput and PRR) and feeds them to

the Optimizer. To support WiFi, BLE, and ZigBee on our embedded platform, we

have implemented three Radio Controllers (i.e., WiFi Controller, BLE Controller,

and ZigBee Controller as shown in Fig. 3.1).

The User Interface supports the interactions between our ARTPoS and its user.

First, it allows the system user to reveal the debugging and operation logs through

a SSH connection. Second, it notifies the user to move the device to the next

distance when the Modeling Engine finishes the PRR measurements at the current

distance. Third, it allows the application to set its desired data rate at runtime.

3.3 Modeling

This section presents the development of tailored regression models with spe-

cialized smoothing characteristics, to represent the (uncertain) nodal power con-

sumption and PRR variations as functions of the radio transmission power set-

tings. This modeling approach is aimed to facilitate robust radio and transmission

power selection decisions (failure to address these uncertainties undermines radio

selection processes, as demonstrated later in Section 3.4.2).

22

3.3.1 Power Consumption Modeling

The measurements from Section 3.2.1 are used to develop quantitative mod-

els of power consumption, as functions of the transmission power setting (p) of

the concerned radio. As evident from Fig. 3.2, significant variations, which can-

not be solely attributed to change in radio transmission power, are inherent in

the measurements. We therefore represent the platform base power consumption

with all radios Off (Ep (V)), and the respective platform power consumption with

only Bluetooth on (Eb (V, pb)), only Zigbee on (Ez (V, pz)), and only WiFi On

(Ew (V, pw)) as functions of uncertain parameters V and the respective transmis-

sion power of the Bluetooth, ZigBee, and WiFi radios (pb, pz, and pw, respectively).

Here the quantity of interest (QoI), i.e., total power consumption, is a function

of the design variable (radio transmission power setting) and a vector of uncertain

parameters V , where the latter can be assumed to be outside the control of the de-

signer and not practically measurable in the current context (e.g., radio backOffs

caused by failed clear channel assessment and inaccurate power meter reading).

Considering the availability of dedicated QoI data (Section 3.2.1), it can be as-

sumed that the uncertainty therein is quantifiable. However, given the observed

large variance and non-normal distribution of the platform power consumption

data (Fig. 3.2), using the first statistical moments (e.g., mean or median) is

deemed not suitable. Secondly, since battery capacity is currently a critical bot-

tleneck in most wireless IoT and embedded system devices, and radios can be a

major contributor to power consumption in such devices, we argue that energy

over-expenditure (and the uncertainty associated with it) should be perceived as

a risk − one that can lead to significantly reduced device uptime and/or frequent

23

switching to low performance modes for the concerned device. Hence, we propose

to use the notion of s-risk [67], to provide a robust or uncertainty-aware scalar

measure of the risk associated with this expense under any given radio setting.

The notion of s-risk, also known as “conditional-value-at-risk”, originated in

the Finance domain [68, 69]. Among risk metrics, the s-risk model is well estab-

lished as a more generalizable model [68] (requires minimal assumptions w.r.t. the

underlying process), and thus considered to be a suitable choice in this nascent

application setting. We use the example of the platform power consumption with

only WiFi On (Ew), to further describe the s-risk concept. Assuming that Ew

follows a continuous probability distribution, for a given risk-aversive parameter γ

(0 <= γ <= 1), the s-risk of Ew can be defined as the average value of Ew over its

worst 1− γ outcomes. Therefore, assuming N samples of Ew are available, s-risk

can be expressed as:

Sγ (Ew (V, pw)) =
1

(1− γ)N

∑
∀k∈Γ

[Ew (V, pw)k]

Γ = set of the highest (1− γ)100% values of Ew

(3.1)

It is readily evident from Eq. 3.1 that higher values of γ leads to greater aver-

sion of (energy expenditure) risk or more conservative decisions, in determining

the optimal radio settings (optimization approach is described in the next section).

From a practical perspective, this “risk-aversive parameter” γ can be designed to

be adaptive to the battery state − e.g., the system will use increasingly greater

value of γ when the device goes from normal to low and low to critical battery

states. Such heuristics could preserve operational feasibility albeit at the cost of

reduced data transfer rates. Owing to its ability to consider tails of probabil-

24

ity distributions (with the help of higher values of γ) and ease of interpretation

and computation, s-risk provides a tractable stochastic measure of the worst-case

scenarios. Based on the definition in Eq. 3.1, we compute the following:

• s-risk value of the platform baseline power consumption (Sp) when all radios

are Off;

• s-risk value of the platform power consumption with only BLE on (Sb).

(Raspberry Pi only supports single transmission power for BLE.);

• s-risk values of the platform power consumption with only ZigBee On (Sz) at

the following different transmission power settings: pz ∈ {−6,−3, 0, 1, 2, 3, 4, 5} dBm;

• s-risk values of the platform power consumption with only WiFi On (Sw) at

the following different transmission power settings: pw ∈ {1, 2, . . . , 20, 21} dBm.

All s-risk values are computed at a prescribed γ = 0.8, which here calls for aver-

aging over the worst 50 values in each case.

The s-risk values of the platform power consumption with only WiFi On and

only ZigBee On are then separately modeled as linear regressions of their respective

transmission settings. A piecewise linear regression is used in the case of WiFi,

and a single linear regression is used in the case of ZigBee. The linear regressions

provide a smoothing of the large variations in the power traces, while also yielding a

monotonically increasing (instead of oscillatory) trend w.r.t. transmission power−

which promotes a more robust template for selecting transmission settings (guided

by power savings). The trained regression functions can be expressed as:

25

Sz,0.8 = 2.05pz + 1.89e03, − 6 ≤ pz ≤ 5

Sw,0.8 =


1.14e01pw + 2.64e03, 1 ≤ pw ≤ 19

2.18e02pw − 1.27e03, 20 ≤ pw ≤ 21

(3.2)

The s-risk models were fitted based on actual power data (collected in the offline

experiments). Illustration of the training data and resulting curve fits can be

found in [], demonstrating the predictability of the s-risk parameter that captures

the energy expenditure risk.

3.3.2 Link Reliability (PRR) Modeling

The PRR measurements from Section 3.2.1 are used to train models of PRR as

functions of the respective radio transmission power settings. Here, we particularly

develop the PRR models for ZigBee and WiFi, since multiple transmission power

settings are available for these two radios on our platform, and they are the ones

also considered in the optimal radio and transmission selection process (Section

3.4).

We observe large variations in PRR measurements, especially when the links

are in the transitional region. The radio control scheme in practice will usually

be unaware of the exact distance between the sender and receiver, as well as of

the other uncertain environmental factors affecting the PRR. Instead, what is

measurable at runtime are the PRR values being experienced by the individual

radios. With this perspective, we propose the state of the system associated with

the PRR recordings to be segregated into different performance categories. In this

context, the PRR and throughput of an individual radio can also be simultaneously

considered, where the categories will then represent the state of the goodput (i.e.,

26

PRR × throughput) in that case.

In the current implementation, four categories, namely “poor”, “low”, “medium”,

and “high” performing states, are defined w.r.t. PRR. For every transmission

power setting of a radio (WiFi/ZigBee), the top 25% PRR measurements are as-

signed to the “high” state, the next 25% are assigned to “medium” state, the

subsequent 25% are assigned to “low” state, and the bottom 25% are assigned to

the “poor” state. Although the recorded (sample) distance between the sender and

receiver is not explicitly considered when making this state-category assignments

(i.e., all PRR measurements under a given radio setting are pooled together),

the assignments are implicitly sensitive to the distance − this is because sender-

receiver distance has a strong adverse impact on PRR. The mean of the PRR

values categorized under each state for a given transmission setting is then com-

puted to serve as the representative bounding value of the PRR for that state (to

be referred to as the PRR state or state-representative PRR values in the remain-

der of this chapter). Regression functions are subsequently used to fit the high,

medium, low, and poor state PRR values of a radio as four separate functions of

its transmission settings.

The PRR state values were observed to present S-shaped trends w.r.t. the cor-

responding radio transmission power settings. This observation led to the choice

of logistic regression to model the “PRR-p” relationships between PRR values

and transmission power settings. An implementation, called L4P [70], of the four

parameter logistic function is used, with the PRR expressed as a function of the

27

-6 -4 -2 0 2 4

ZigBee Transmission Setting (dBm)

0

20

40

60

80

100

Z
ig

b
e

e
 P

R
R

PRR Data - high

Regression - high

PRR Data - med

Regression - med

PRR data - low

Regression - low

PRR Data - poor

Regression - poor
Medium

High

Poor Low

(a) PRR of ZigBee

5 10 15 20

WiFi Transmission Setting (dBm)

0

20

40

60

80

100

W
iF

i
P

R
R

PRR Data - high

Regression - high

PRR Data - med

Regression - med

PRR Data - low

Regression - low

PRR Data- poor

Regression - poor

Low

High

Poor

Medium

(b) PRR of WiFi

Figure 3.3: Regression plots of PRR as functions of radio transmission settings;
PRR data segregated into poor, low, medium, and high states.

radio transmission power, p, as given by

PRR(p) = d+ (a− d)/(1 + (p/c)b) (3.3)

Here, the four parameters a, b, c, and d respectively represent the minimum asymp-

tote, the stiffness of the curve, the inflection point, and the maximum asymptote.

The estimated values of the 8 sets of these four parameters are not listed here,

since they are subjective to our recorded PRR measurements, and do not add

significant generalized value. Instead, the four logistic functions, that are trained

on the high/ medium/ low/ poor state PRR values of ZigBee and WiFi, are re-

spectively shown in Figs. 3.3(a) and 3.3(b). It is readily evident from Fig. 3.3 that

while capturing the nonlinear S-shaped “PRR-p” relationship, the logistic regres-

sion also provides monotonically increasing “PRR-p” functions. Such a positive

“PRR-p” correlation is imperative to promoting robust transmission setting mod-

ulation − where an optimal scheme should seek to increase the radio transmission

power, in response to the need to increase PRR, over the entire range of available

28

transmission power settings.

3.4 Optimization

3.4.1 Problem Formulation

As stated before, the generalized objective of the radio and transmission selec-

tion is to adapt to the current needs of the application (under the current envi-

ronment) in a way that: restrict packet loss to within a small/acceptable

bound, while platform power consumption attributed to the radios is

minimized . These two criteria, packet loss and power consumption, can be per-

ceived as the state parameters ; and the choice of the radio type (ZigBee, WiFi,

BLE, or any of their combinations) and their transmission power setting can be

perceived as action variables. This perspective lends to formulating the radio and

transmission selection process as an optimization problem, that given the cur-

rent state of the radio performance chooses the optimum action. The Raspberry

Pi only supports single transmission power for BLE; we therefore only consider

ZigBee and WiFi in our problem formulation. (We plan to implement our own

CC2650 BLE driver under Contiki and include BLE into our optimization as our

future work.)

In the remainder of the chapter, the PRR of WiFi and ZigBee, at given trans-

mission settings (pw and pz), will be respectively represented by rw (pw) and rz (pz)

or simply as rw and rz, where 0 ≤ rw, rz ≤ 1; the throughput of WiFi and ZigBee

will be expressed in terms of the number of packets transmitted, and represented

by hw and hz, respectively. The packet size for WiFi and ZigBee is considered to

be 64 bytes. The aggregated goodput (Gw,z) of the radios is then given by:

29

Gw,z (pw, pz) = hwrw (pw) + hzrz (pz) (3.4)

If only one of the radios is on, the aggregated gootput reduces to the individual

goodput of that radio. The power consumption of the transmitting platform can

then be expressed as a function of the data rate (D), the aggregated goodput Gw,z,

the platform baseline power consumption (Ep), and the estimated platform power

consumption when radios operate at the given transmission settings (Ew and Ez).

The time averaged power consumption of the platform is approximated by:

fE = min (1, D/Gw,z) (Ew + Ez − 2Ep) + Ep (3.5)

where (Ew + Ez − 2Ep) gives a measure of the power consumption attributable

to the active radios. This measure is multiplied by the fraction of the time when

the radios need to be active in a given interval; the latter is given by the “data

rate/goodput” ratio (min (1, D/Gw,z)). When the WiFi is off, Ew(Off) = Ep and

rw(Off) = 0; similarly, when the ZigBee is off, Ez(Off) = Ep and rz(Off) = 0. It

is also important to note that Eq. 3.5 assumes that the data is split between the

two radios based on the ratio of their individual goodputs, and retransmission of

lost packets is enabled in the system.

The generalized optimization problem, with the WiFi and ZigBee transmission

settings (pw and pz, respectively) serving as the decision variables, can therefore

30

be defined as follows:

min
pw,pz

fE (pw, pz, hw, hz)

s.t.

1−min

(
1,

D

Gw,z (pw, pz)

)
≥ ε

where

pw ∈ {Off, 1, 2, . . . , 20, 21}

pz ∈ {Off,−6,−3, 0, 1, 2, 3, 4, 5}

(3.6)

where the tolerance parameter ε represents a safety margin in the “data rate/goodput”

ratio; e.g., ε = 0.1 indicates a safety margin of 10% in the “data rate/goodput”

ratio. It is important to note that both the objective function, fE (Eq. 3.5),

and the “data rate/goodput” (Eq. 3.6) constraint are nonlinear, since the PRR is

a nonlinear function of the radio transmission power (as seen from Fig. 3.3). In

addition, owing to the uncertainties in the PRR and throughput of the radios, and

uncertainties in the power consumption of the platform, both the objective and

constraint functions are also uncertain. As a result, we have an integer non-linear

programming (INLP) problem with uncertainties. Although the INLP problem is

NP-hard [71], the relatively limited number of transmission power settings that

the two radios can assume (WiFi: 22 and ZigBee: 9) alleviates the computational

burden of solving this optimization at runtime. Instead of formulating the opti-

mization under uncertainty as a classical (computationally costly) reliability based

optimization problem, uncertainties are addressed apriori using the combination

of s-risk measures of power consumption and regression modeling of PRR and s-

31

risk measures (as presented in Section 3.3). The online execution time of solving

this optimization problem is presented in Section 3.5.1.

An offline optimization study illustrating the impact of the PRR and power

consumption uncertainties (when left untreated) on the radio selection decisions,

and the design of our online optimization scheme for runtime radio and transmis-

sion selection, are discussed next.

3.4.2 Study on the Impact of Uncertainties

An offline optimization study is set up to investigate how the radio selection

is affected by the environmental uncertainties (that cause ill-predictable PRR

variations) and systemic uncertainties (that cause power consumption variations).

Hence, in this study, we deliberately neither employ any smoothing operation on

the empirical data nor use the regression models developed in Section 3.3.

Optimization is performed for different sample combinations of distance be-

tween sender and receiver (X) and data rate (D), whereX ∈ {10, 20, 30, . . . , 150}m

and D ∈ {25, 50, 75 . . . , 150} packets/s. A conservative safety margin of 20%

(ε = 0.2) is imposed on the data rate/goodput ratio. For a given distance, data

rate, and radio transmission settings (pw, pz), the objective function is evaluated

by directly computing the s-risk value of fE (Eq. 3.5) from the platform power

measurements data pertaining to the stated radio transmission settings and the

PRR measurements data pertaining to given distance and radio transmission set-

tings (Section 3.2); a risk-aversive parameter of β = 0.8 is used here. Considering

the comparatively smaller variance in the throughput measurements and the focus

of this work on dynamic systems (where distance variation mainly affects PRR),

the throughput of ZigBee and WiFi is fixed at their respective measured median

32

Figure 3.4: Offline study (without smoothing measures or regression models): Top:
Optimal transmission power settings of WiFi and Zigbee when operating together;
Bottom: success (= 1) or failure (= 0) in meeting the “data-rate/goodput” ratio
constraint for different distance and data rate combinations.

values (hw = 800 packets/s and hz = 225 packets/s).

Since only a small set of radio settings are available – i.e., 22 × 9 possible

combinations of (pw, pz) – those violating the data rate/goodput ratio constraint

are first filtered out; then a simple min-search is employed to identify the optimal

feasible setting, p∗w, p
∗
z, that yields the minimum power consumption. This process

is performed for all the sample combinations of sender-receiver distance and data

rate. The radio transmission setting decisions yielded by this uncertainty-sensitive

optimization is shown in Fig. 3.4. For illustration purposes, the results for three

data rates (150, 175, and 200 packets/s) are shown. In Fig. 3.4, the X-axis and

Y-axis respectively represent the sender-receiver distance and the data rate; in

the top two plots, the color of the circles represent the optimal WiFi and ZigBee

transmission settings in dBm; and a missing circle indicates that particular radio

was set to “OFF” (for the given data rate/distance sample). The last plot in

Fig. 3.4 indicates whether the optimal radio setting succeeded (= 1) or failed

(= 0) to satisfy the data-rate/goodput ratio constraint (in Eq. 3.6).

33

The impact of noise/uncertainty of the empirical data (driving the nominal

decisions) is apparent in the offline optimization results as shown in Fig. 3.4.

For example, it can be seen that when increasing the sender-receiver distance,

the radios often switch back and forth between higher and lower settings (in-

stead of a more robust monotonic variation); secondly, no feasible/successful ra-

dio setting combination is found for distances of 90m and 110m, although feasi-

ble/successful settings were found for higher distances of 120− 140m. These ob-

servations highlight the detrimental impact that directly using recorded

data (with their associated uncertainties) can have on any empirical

decision-making strategy. This directly motivates 1) the uncertainty-aware

power consumption and PRR models developed in Section 3.3, and 2) the design

of the two online algorithms that use these models to offer robust solutions, which

will be described in the next sub-sections.

3.4.3 Fast Online Optimization (ARTPoS)

The ARTPoS online optimization artifact is developed to serve as a first foray

into training a light-weight solution for runtime selection of radio and transmis-

sion power under an energy-scarce and uncertain/dynamic environment − typical

of application domains such as home/commercial area networks or highly mobile

networks. The online scheme should be able to process, interpret, and optimally

respond to the uncertainties, without resorting to expensive uncertainty quantifica-

tion and typical reliability-based optimization techniques. These latter techniques

are generally not suited to be executed at runtime on embedded systems with

humble computing capacities.

Our approach aims to construct a novel runtime scheme with the following de-

34

sirable characteristics: (i) lightweight execution, (ii) uncertainty-awareness,

and (iii) promotion of a power-saving radio/transmission selection policy.

It is important to reiterate that the unique models of power consumption (s-risk

models) and PRR (logistic regressions), presented in Section 3.3, are particularly

aimed at enabling this light-weight runtime scheme. Drawing parallels to robust

control and Markov Decision Processes, the overall objective of the online scheme

can be stated as: to maintain/accomplish desirable values of the state parameters

(e.g., goodput and platform power consumption) under a dynamic and uncer-

tain environment, by optimally modulating the action variables (i.e., selection of

radio(s) and transmission setting(s)).

A look-up table system (radio-settings-table) is first generated. Each row (i)

and each column (j) of this table respectively corresponds to a WiFi and a ZigBee

transmission setting (pjz, p
i
w); the table thus comprises a total of 22× 9 cells (See

Eq. 3.6), where each cell Cij contains one scalar value and two 4-tuples, as shown

below:

Cij = {E(pz,j, pw,i), R(pz,j), R(pw,i)}

E(pjz, p
i
w) = Sz,0.8 (pjz) + Sw,0.8 (piw)− 2Sp,0.8

R(pz,j) =
(
rhigh
z,j , r

medium
z,j , rlow

z,j , r
poor
z,j

)
R(pw,i) =

(
rhigh
w,i , r

medium
w,i , rlow

w,i , r
poor
w,i

)
where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9.

(3.7)

In Eq. 3.7, the scalar E(pz,j, pw,i) represents the power consumption attributed to

the active radios, when operating at the associated transmission setting combina-

tion (pjz, p
i
w); it is derived from the s-risk measures of power consumption (Section

35

3.3.1), where the s-risk value of the platform baseline power consumption with

both radios Off (Sp,0.8) is estimated to be 1831mW ; the s-risk values of the plat-

form power consumption with ZigBee on (Sz,0.8) and that with WiFi on (Sw,0.8)

are estimated from the linear regressions in Eq. 3.2.

The two 4-tuples in Eq. 3.7, R(pz,j) and R(pw,i), represent the four PRR values

corresponding to the high, medium, low, and poor operational (or performance)

states of ZigBee and WiFi, respectively, at the corresponding transmission settings.

These state values are given by the PRR regression functions developed in Section

3.3.2 (Figs. 3.3(a) and 3.3(b)).

It is important to note that in practice, the look-up table is stored/loaded

in a more compact form, instead of the 22 × 9 table (described here for ease of

illustration). Since the WiFi and ZigBee settings (i, j) are essentially independent

of each other, the look-up table can be stored in the actual test bed in a form that

yields a frugal set of “1 + (5 × (22 + 9))” floating point values, making it highly

effective for fast runtime decision-making on embedded devices.

The runtime radio and transmission selection algorithm/program, that uses

this lookup table, is designed as a four-step process: sense→classify→predict→search .

A pseudocode of this runtime program is given in Algorithm 1, and the individual

steps are described below.

• Sense : The online process measures PRR (reported by the receiver) and

throughput of each radio at a desired sampling frequency; it computes the data

rate/goodput ratio (Dt/Gt) based on the time averaged values of PRR and through-

put over the last time window t. If the constraint, 1 − Dt/Gt ≥ ε, is violated,

it invokes the succeeding steps; otherwise, no change is made. In addition, the

36

Algorithm 1: ARTPoS

1 Read: x, y, prrw, prrz, Dt, hw, hz; // Input of current state

variables from receivers, Sense stage

2 function FindNearest(prrx, x):
// Classify stage

3 if min(|prrArray − prrx|) > prrLimit then
4 prrState = min(|prrArray − prrx|);
5 refitArray = RefitData(prrArray, x, prrx); // ARTPoS-irp refit

6 return min(refitArray) satisfying |refitArray − prrx|;
7 else
8 return min(prrArray) satisfying |prrArray − prrx|;
9 end

10 end function
11 function SearchFunc(x, y, prrw, prrz, Dt, hw, hz):
12 return Dt/(hw * FindNearest(prrw, x) + hz * FindNearest(prrz, y));
13 end function
14 exclude ← powerTable[x+1, y+1]; // Power values to omit in

search

15 for (a, b) in powerTable do
16 if powerTable[a, b] in exclude then
17 continue;
18 end
19 currentSettings = SearchFunc(a, b, prrw, prrz, Dt, hw, hz);

// Search stage

20 if currentSettings > 0.9 then
21 continue;
22 end
23 append (a, b) to feasibleSettings;
24 append powerTable[a, b] to feasiblePower;

25 end
26 return feasibleSettings[index of min(feasiblePower)]; // Predict stage

27

Algorithm Nomenclature:
prrw, prrz: Packet reception ratio of WiFi and ZigBee radios.
Dt: Data rate.
prrArray: Array of pre-generated PRR values that prrw and prrz are classified
against.
refitArray: Array of PRR values including new prrw and prrz that violates the
prrLimit threshold (only in ARTPoS-irp).
SearchFunc: function implementing Search stage to evaluate the datarate to
goodput ratio.
powerTable: pre-computed lookup table from Predict stage.
feasibleSettings: array of WiFi and Zigbee dBm values that satisfy search conditions.
feasiblePower: array of power values (from lookup table) that satisfy search
conditions.

37

process computes and checks if the relative change in the D/G ratio is greater

than 10%, i.e., |Dt/Gt − Dt−1/Gt−1| > 0.1. If this criteria is met, the succeed-

ing steps are again invoked; otherwise no changes are made. The frequency of

the constraint computation and the D/G change computation depends on the de-

signer’s preferences. More risk aversive strategies will call for higher frequency of

the former, and more energy-conscious strategies will demand higher frequency of

the latter. Too frequent changes however may not be recommended, as it might

entail unnecessary computing overhead on the system.

• Classify : If the sense process invokes the succeeding steps, first, the current

state of each radio’s performance, (ptw, r
t
w) and (ptz, r

t
z), is classified into the high,

medium, low, and poor (or in-between) state categories. This is accomplished

by the following rule: Classify the current state of the WiFi into lying at one or

between the two categories, whose associated PRR values immediately bound the

measured PRR. For example (using Fig. 3.3(b)), if the PRR of WiFi transmitting

at 14dBm is 70%, then its performance/operation is classified to currently lie

between the “medium” and “low” states; or if the PRR of WiFi transmitting at

4dBm is 90%, then its operation is classified into purely “high” state. A similar

rule applies to ZigBee as well. More sophisticated classification schemes, such as

using Bayes rule, can also be readily implemented within this process. This being

the first implementation of this novel online scheme, the simpler interval based

classification is instead employed here.

• Predict : After the classification step, the D/G constraint (where G =

htwr
t
w,ij +htzr

t
z,ij) and the energy objective function (fE) are evaluated for each cell

of the radio-settings table, where the latter is given by:

38

f tE,ij = min

(
1,

Dt

htwr
t
w,i + htzr

t
z,j

)
E(pjz, p

i
w) + Sp,0.8

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(3.8)

where the PRR values of ZigBee and WiFi for each cell of the lookup table

(rtw,ij, r
t
z,ij) correspond to the classified category. More specifically, a linear in-

terpolation is used. Taking the previous example of PRR of WiFi transmitting at

14dBm to be 70% − where its operational state is estimated to lie between the

“medium” and “low” categories, the expected PRR of WiFi (at that time point)

for say 12dBm will be given by:

rtw,12 = rlow
w,12 +

rtw,14 − rlow
w,14

rmedium
w,14 − rlow

w,14

(
rmedium
w,12 − rlow

w,12

)
(3.9)

For purely high or purely poor states, 100 and 0 are used as the respective upper

and lower bounds for the interpolation.

• Search : Once the expected power consumption (fE,ij) and the D/G con-

straint has been computed for all 22×9 ZigBee/WiFi settings, those violating the

D/G constraint are first filtered out. A min-search is then executed to identify

the optimal ZigBee/WiFi setting, (i, j)∗, as the one that yields the smallest value

of fE,ij. The system immediately switches to this new setting. This step can be

expressed as:

min
i,j

f tE,ij

subject to 1− Dt

htwr
t
w,ij + htzr

t
z,ij

≥ ε

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(3.10)

39

In practice, the filtering of feasible solutions and searching for the optimal solution

are both performed in computational efficient ways − e.g., the filtering is initiated

by searching from the highest setting, (pjz, p
i
w) = (5, 21)dBm, and moving some-

what diagonally, until a setting (k, l) is reached where the constraint is violated;

all other lower settings (i.e., ∀(i ≤ k, j ≤ l)) are filtered out without computing

the constraint.

The median execution time of ARTPoS online optimization is 49ms on an

ARM processor. Section 3.5.1 will present our micro-benchmark evaluations in

detail.

3.4.4 Online Optimization with Insitu Refinement of PRR Models

(ARTPoS-irp)

ARTPoS-irp is our first step towards a system that is also capable of judging

how far the real environment (during operation) deviates from the offline training

environment, and adapts its models online in order to provide more reliable deci-

sions. The modified algorithm mainly extends the Classify step in the ARTPoS

system (see Section 3.4.3) with the aim of increasing the reliability with which

the radio’s performance ((ptw, r
t
w) and (ptz, r

t
z)) is classified into the high, medium,

low, poor state categories. This is achieved by identifying significant deviations

(from the offline trends) and responding to it by dynamically refitting the PRR

regression models used in the Classify step. As the radio’s performance now seeks

to be reflective of the environment in which the system operates, the algorithm is

expected to become more robust in its adaptation.

The refit is invoked by consistent over/underestimation of the PRR state com-

pared to the classified curves (given in Fig. 3.3). In ARTPoS-irp, the measure

40

of over/underestimation is through the observation of the difference between the

measured PRR value and the PRR value at the given transmission setting (dBm)

based on the state it is classified under. If the difference exceeds a certain thresh-

old, rTH = 0.3 for n consecutive time steps, the refit is performed; for example,

perform refit of the WiFi PRR curve if:

|rclassified
w,i − rmeas

w,i | > rTH , for n consecutive time steps (3.11)

Here, n is set at 5, and rclassified
w,i is the PRR given by the curve into which the

current state has been classified, and rmeas
w,i is the online measured PRR value. If

the difference does not exceed the threshold, the refit is not invoked and ARTPoS-

irp behaves identically to ARTPoS.

Next, the violating PRR values are added to the existing dataset, and the refit

is performed using the logistic regression [70] described in Eq. 3.3. In order to

prevent ever-growing size of the dataset during operation, a forgetting strategy can

be used (after a threshold size is exceeded) where every time new data is added

for refit the oldest data at the corresponding transmission dBm can be removed

from the set.

To illustrate the role played by this online updating strategy, we provide a

representative example in Fig. 3.5. Here, the leftmost plot (Fig. 3.5(a)) shows the

original offline trained PRR models for WiFi. The next plot (Fig. 3.5(b)) shows

the PRR models after one round of updating invoked by new deviating data at

7dBm classified under the “medium” category PRR model (note that the blue

curve fit, corresponding to “Model - med” has got updated). The rightmost plot

(Fig. 3.5(c)) shows the PRR models after another round of updating, in this case

41

Figure 3.5: WiFi PRR Models: showing how the offline trained model gets updated
online in response to new PRR data that deviate from the offline fits

invoked by new deviating data at 1dBm classified under the “high” category (note

that the green curve fit, corresponding to “Model - high” has got updated). It is

important to note from Fig. 3.5 that, the observed effectiveness of adapting the

PRR models to the varying runtime environment is attributed to both the new

online updating scheme in ARTPoS-irp and the original choice of the (logistic)

regression fitting.

3.5 Evaluation

To examine the efficiency of ARTPoS and ARTPoS-irp, we perform a series of

experiments on our embedded platform presented in Section 3.2. We first measure

the overhead of the key operations such as the time duration of the optimizer

selecting the best radio(s) and needed transmission power(s) and the overhead at-

tributed to turning the radio(s) On and Off. We then evaluate ARTPoS/ARTPoS-

irp’s impact on power consumption and link reliability, and compare their perfor-

42

Figure 3.6: CDF of the time duration for ARTPoS and ARTPoS-irp to determine
the optimal radio and transmission power.

mance against three baselines. A power meter from Monsoon Solutions [62] is

connected to the sender to measure the power consumption.

3.5.1 Micro-Benchmark Experiments

We first evaluate the time duration taken by the two online optimal approaches

to select the best radio(s) and minimum needed transmission power(s). We record

the time of the events when the input is fed into the optimizer and the output

(i.e., radio and transmission power selection) is generated. For this experiment,

we repeat the measurement 10,000 times for both ARTPoS and ARTPoS-irp (with

refit), using randomly generated inputs, on our 1.2GHz 64-bit quad-core ARMv8

CPU platform. In order to show the difference to ARTPoS, we force ARTPoS-irp

to invoke its refit every time by feeding in randomized inputs, since ARTPoS-irp’s

behaviour is identical to ARTPoS’s without invoking its refit. The difference of the

execution time between the two methods represents the time taken to perform the

refit triggered by estimation errors. Figure 3.6 compares the cumulative probabil-

ity density (CDF) of the algorithm execution time of ARTPoS and ARTPoS-irp.

As shown in Fig. 3.6, the median execution time of ARTPoS is 49ms (consuming

13.5mJ more energy than CPU idling), where 90% and 99% of the experimental

43

Figure 3.7: Radio activities when the WiFi controller manages packet transmission
in a 10s period; averaged power consumption over the first three time periods,
T1 → T2, T2 → T3 and T3 → T4, respectively are 2.09mW , 2.61mW and 2.03mW .

runs finish within less than 225ms and 456ms, respectively. In comparison, the

median execution time of ARTPoS-irp is 1273ms, where 90% of the experimental

runs finish within 2675ms; this additional computing burden can be directly at-

tributed to the refitting of the PRR function (via logistic regression) performed

insitu in ARTPoS-irp. This burden can be alleviated by increasing the deviation

threshold and/or the number of consecutive time steps for which deviation is al-

lowed (refer Eq. 3.11) before invoking the refit; future work would explore how

computational efficiency trades-off with energy and link reliability performance in

this context.

We also measure the time duration and energy consumption of other key op-

erations in ARTPoS and ARTPoS-irp. Figure 3.7 shows an example power con-

sumption trace where the WiFi controller switches On the WiFi radio, transmits

1000 packets, and then switches Off the radio. The platform takes T2−T1 = 0.44s

and consumes 0.92J of energy to turn On the radio and set its transmission power.

Transmitting 1000 packets takes T3−T2 = 1.38s, while turning Off the radios takes

T4 − T3 = 1.02s. The platform consumes 3.60J and 2.07J of energy to transmit

the data and turn Off the radio, respectively. The radios are kept Off for the rest

44

(a) Power consumption saving provided by ARTPoS-irp over the
baselines and ARTPoS

(b) PDR improvement provided by ARTPoS-irp over the baselines
and ARTPoS

Figure 3.8: Power consumption and PDR differences between our approaches
(ARTPoS and ARTPoS-irp) and the baselines (Fixed-power, ART-WiFi and ART-
ZigBee) at different data rates.

of the period T5 − T4 = 7.16s. These results demonstrate the efficiency of the

optimizer and the radio controllers, as well as the advantage of turning the radios

Off after transmissions in each period, and also illustrate the significant need of

developing new low-power platforms for IoT applications to achieve lower baseline

power consumption.

3.5.2 Impact on Power Consumption and Link Reliability

To understand how the proposed methods impact power consumption and

link reliability, we performed a set of experiments comparing the performance of

ARTPoS and ARTPoS-irp with three baselines. In all experiments, we deploy

45

a benchmark application on top of the ARTPoS and ARTPoS-irp by generating

data packets periodically. ARTPoS and ARTPoS-irp are configured to perform the

radio and transmission power selection in each period (i.e., 10s) based on the mea-

sured PRR and throughput of the ZigBee and WiFi links. If the then-active radio

and transmission power setting is found to be the best-suited, it is retained; else

the ARTPoS/ARTPoS-irp switches to a new best-suited setting. Non-overlapping

channels are used for ZigBee and WiFi to avoid interference. Radios are turned

Off after the last transmission in each period and the unselected one is kept Off to

reduce power consumption for our approaches and the baselines. If both radios are

selected for use, packets are partitioned based on their throughput ratio, allowing

the platform to sleep earlier and save energy. Due to the lack of a baseline that

jointly optimizes the selection of both radio and transmission power, we extend

the ART [14], a practical state-of-the-art transmission power control approach

designed for ZigBee, and create three baselines: one with only ZigBee radio on

running ART (ART-ZigBee), one with only WiFi radio on running ART (ART-

WiFi), and one with both radios on operating at their default powers, i.e., 21dBm

for WiFi and 5dBm for ZigBee (Fixed-power).

We performed five experimental runs, respectively with Fixed-power, ART-

WiFi, ART-ZigBee, ARTPoS, and ARTPoS-irp, in a round robin fashion to min-

imize the temporal effects of the dynamic wireless environment (for fair compar-

ison). Figure 3.8 shows the power consumption and packet delivery rate (PDR)

comparisons between our approaches and the baselines. To explore ARTPoS-irp’s

performance under different traffic demands, we repeated the experiments by con-

trolling the application to generate data at different rates. Under each data rate

46

and approach, we repeat the experiments five times and present the confidence

intervals in Fig. 3.8.

As shown in Fig. 3.8(a), both of our proposed methods, ARTPoS and ARTPoS-

irp, provide significant power savings compared to the Fixed-power and ART-WiFi

baselines. For example, our ARTPoS-irp reduces the average power consumption

by 114mW and 102mW over Fixed-power and ART-WiFi, respectively, when

the data rate is 1000 packets/period. Similarly, ARTPoS-irp achieves significant

power savings over Fixed-power and ART-WiFi at higher data rates (60.1mW and

66.2mW at 3000 packets/period, 86.5mW and 104mW at 5000 packets/period,

and 125mW and 126mW at 7000 packets/period). As a comparison for power

saving values, the CC2650 radio consumes 30mW power when transmitting at

5dBm [58]. The original ARTPoS demonstrates significant improvements over

the baselines (Fig. 3.8). It is however important to note that ARTPoS-irp does

outperform ARTPoS, by providing 0.4% to 6.4% greater PDR (3.7% increase on

average), while consuming 8.7mW to 17.3mW less power (13.5mW decrease on

average) than ARTPoS for each data rate. These observations provide direct evi-

dence for the conceived benefits of the insitu (PRR model) refinement incorporated

in ARTPoS-irp.

Compared to ART-ZigBee, ARTPoS-irp consumes 8.5mW more power at the

lowest data rate since it initially turns on the WiFi and ZigBee radios to measure

their channel conditions. More importantly, although ARTPoS-irp consumes more

power than ART-ZigBee, the latter is not able to deliver satisfactory PDRs at

high data rates because of the ZigBee’s limited bandwidth (i.e., the average PDRs

under ART-ZigBee are 68.7%, 44.6%, 31.0%, and 25.0% when the data rate is

47

(a) Power consumption saving provided
by ARTPoS-irp over the baselines and
ARTPoS

(b) PDR achieved by the baselines and
our approaches

Figure 3.9: Power consumption and PDR comparison between our approaches
(ARTPoS and ARTPoS-irp) and the baselines (Fixed-power, ART-WiFi and ART-
ZigBee) at different locations.

3000, 5000, 7000, and 9000 packets/period, respectively, i.e., significantly inferior

to ARTPoS-irp and ARTPoS (as seen from Fig. 3.8(b)). Neither WiFi nor ZigBee

alone can support the data rate of 9000 packets/period, while our ARTPoS-irp

and ARTPoS provide satisfactory PDRs by bundling the WiFi and ZigBee radios.

In order to examine ARTPoS-irp’s performance under different environments,

we set the data rate to 7000 packets/period and performed a set of experi-

ments comparing the performance of ARTPoS-irp with ARTPoS and two base-

lines (Fixed-power and ART-WiFi)2 at different indoor and outdoor locations.

The transmitters and receivers are placed at different rooms in an indoor office

environment and in an outdoor open space. Fig. 3.9 shows the power consump-

tion and PDR comparisons between our approaches and the baselines. At each

location, we repeat the experiments with each approach five times and present the

confidence intervals in Fig. 3.9. As shown in Fig. 3.9(a), both of our proposed

methods, ARTPoS and ARTPoS-irp, provide significant power savings compared

2We did not run experiments to evaluate ART-ZigBee because the data rate (7000
packets/period) is beyond ZigBee’s capacity.

48

(a) Power consumption saving provided
by ARTPoS-irp over the baselines and
ARTPoS

(b) PDR achieved by the baselines and
our approaches

Figure 3.10: Power consumption and PDR comparison between our approaches
(ARTPoS and ARTPoS-irp) and the baselines (Fixed-power and ART-WiFi) with
and without interference.

to Fixed-power and ART-WiFi baselines. For example, ARTPoS-irp reduces the

average power consumption by 105mW and 136mW over Fixed-power and ART-

WiFi, respectively, when performed indoors, and saves 118mW and 148mW when

performed outdoors. As shown in Fig. 3.9(b), ARTPoS and ARTPoS-irp achieve

average PDRs over 95% at both indoor and outdoor locations, which are very

close to that of Fixed-power and ART-WiFi.

To evaluate ARTPoS-irp’s performance under different interference conditions,

we set the data rate to 7000 packets/period and performed a set of experi-

ments comparing the performance of ARTPoS-irp with ARTPoS and two baselines

(Fixed-power and ART-WiFi) with and without interference. We run JamLab

[72] on a TelosB mote [73] to generate controlled interference. The jammer is

placed one meter away from the receiver. Fig. 3.10 shows the power consumption

and PDR comparisons between our approaches and the baselines. Under each

channel condition, we repeat the experiments with each approach five times and

present the confidence intervals in Fig. 3.10. As shown in Fig. 3.10(a), ARTPoS

49

(a) Radio power consumption trace

(b) PDR trace

Figure 3.11: Radio power consumption and PDR traces of three transmitters for
30 periods.

and ARTPoS-irp provide significant power savings compared to Fixed-power and

ART-WiFi baselines. For example, ARTPoS-irp reduces the average power con-

sumption by 131mW and 146mW over Fixed-power and ART-WiFi, respectively,

when performed without interference, and saves 246mW and 109mW with in-

terference. It is notable that more energy is consumed by the WiFi radio when

the WiFi channel is interfered, especially for ART-WiFi which uses the WiFi ra-

dio only. As shown in Fig. 3.10(b), the average PDRs of all approaches are over

95% without interference and decrease to the range between 81% and 85% with

interference.

Finally, we examine the performance of ARTPoS-irp when new nodes join the

network. When multiple senders transmit data to a single receiver, the nework is

50

configured to run a TDMA-based MAC to avoid packet collisions. In the exper-

iment, we configure three senders to join the network one by one with the data

rate of 3000 packets/period. Specifically, only node 1 sends data to the receiver

during the first 10 periods (200s). Node 2 begins to transmit at the 11th period,

while node 3 joins the network at the 21st period. Fig. 3.11 plots the power con-

sumption and PDR during the experiment. Each node runs ARTPoS-irp to select

its radios and transmission powers. As Fig. 3.11(a) shows, each node consumes

slightly more power when multiple nodes are present because of the idle listen-

ing. For example, the median power consumption of node 1 during the first 10

periods is 188mW . It increases to 212mW during the next 20 periods when two

senders transmit. It further increases to 218mW when three senders are present.

As Fig. 3.11(b) shows, the PDRs remain stable when new nodes join the network,

demonstrating the effectiveness of ARTPoS-irp on preserving the link reliability

through running a TDMA-based MAC protocol.

The overall experimental results thus show that ARTPoS-irp and ARTPoS can

effectively reduce the energy consumption while maintaining satisfactory link re-

liability, to meet varying network traffic demands under different real/uncertain

environments. Moreover, the new ARTPoS-irp consistently delivers superior per-

formance compared to the original ARTPoS, particularly in terms of power con-

sumption, thereby demonstrating the advantage of the novel online adaptation

mechanism built into ARTPoS-irp.

51

3.6 Conclusion and Future Work

Given the dynamic nature of communication in IoT (e.g., moving IoT/robotic

units in uncertain commercial/residential/industrial environments), a traditional

one-radio-fits-all approach cannot meet the challenges under typically varying op-

erating conditions and traffic. This chapter presents the new ARTPoS system that

makes available multiple wireless technologies at runtime and selects the radio(s)

and their transmission power(s) most suitable for the current conditions. The se-

lection process aims to preserve link reliability within acceptable thresholds, while

minimizing the power consumption of the node attributed to radio operation. To

this end, empirical approaches to modeling power and PRR are presented, which

allow the system to proactively adapt to large variations in power consumption

and link reliability observed runtime. This is followed by the development of

two computationally light-weight online optimization schemes, based on a unique

sense-classify-predict-search process, with the latter scheme also employing an in-

situ (runtime) refinement of the PRR models for added robustness in meeting the

QoS objectives. Experimental evaluations of the thus formulated online optimiza-

tion schemes, and their comparison with different baselines, show that ARTPoS

can remarkably reduce the power consumption, while maintaining satisfactory link

reliability. We plan to integrate ARTPoS with the low power listening technique

to support efficient duty cycling and enable model updating at runtime as our fu-

ture works. In addition, we are also currently investigating approaches to extend

this fundamental radio/transmission selection technique from a one-to-one com-

munication to a many-to-many/network-scale communication framework involving

gateways. Decomposed problem formulations and decentralized decision-making

52

are expected to serve as two other core elements in facilitating this important next

step in this research.

53

4 Radio Selection and Data Partitioning for

Energy-Efficient Wireless Data Transfer in Real-Time

IoT Applications

4.1 Introduction

The importance of real-time wireless data transfer is rapidly increasing for the

Internet of Things (IoT) applications. For example, smart glasses worn by a doctor

need to transmit real-time data to a hospital information system, which performs

face detection and recognition, for real-time interaction with recognized patients

within a certain deadline, which is ideally a few hundred milliseconds [74]. As

another example, periodic sensor readings from unmanned aerial vehicles (UAVs)

should be delivered every second to a georeferencing system that analyzes the data

to determine the real-time position and altitude of UAVs [75]. Other emerging

IoT applications, e.g., structural health monitoring [76], clinical monitoring [77],

and industrial process automation [78, 79], also require real-time wireless data

transfer. In such applications, missing data delivery deadlines may result in cog-

nitive distraction, injury, structural damage, or safety hazard. However, it is very

challenging to support stringent timing constraints through wireless medium due

to its inherent unreliability and timing-unpredictability. Moreover, the energy

constraints significantly amplify the challenge, since most of those IoT devices are

battery-powered and achieving high energy efficiency is critical for those applica-

54

tions.

Fortunately, embedded system hardware and radio technologies are advancing

fast in recent years. As a result, more and more embedded devices are equipped

with heterogeneous radios. For example, Firestorm [57] supports ZigBee and Blue-

tooth Low Energy (BLE) in one device and TI CC2650 [58] integrates those two

radios on a single chip. IOT-Gate-iMX7 [60] is an industrial IoT gateway, which

supports 4G/LTE, WiFi, Bluetooth, and Zigbee. LX Cellular Core [80] is a small-

sized IoT platform, which features 2G/3G, WiFi, BLE, ANT+, LoRa, Taggle,

and SigFox. Heterogeneous radios are becoming increasingly available in modern

embedded devices, offering new opportunities to use multiple wireless technolo-

gies for real-time applications. However, using multiple heterogeneous radios may

enhance the timeliness at the expense of higher energy consumption or vice versa.

It is even more challenging to strike a good balance between the two potentially

conflicting requirements.

This chapter aims to address the previously stated challenges and presents

an energy-efficient radio switching and bundling solution to minimize the energy

consumption of battery-powered IoT devices for real-time applications and reduce

the deadline miss ratio when facing tight deadlines, leveraging the aforementioned

hardware advancements. To assure the timeliness, we target at a single-hop appli-

cation scenario, since most existing solutions relying on multi-hop mesh networks

suffer from long latency and high complexity. Our approach conforms to the ad-

vanced wireless network technology trend as the industry is investing heavily in

network infrastructure to support IoT visions such as smart cities. As a result,

more and more access points and edge servers are becoming readily available to

55

support various IoT applications. Specifically, we make the following contribu-

tions:

• We formulate the runtime radio switching and bundling as an Integer Linear

Programming (ILP) problem;

• We design the Real-Time radio Selection (RT-Select) algorithm that opti-

mally and quickly selects between two radios and partitions data between

them at runtime to minimize the energy consumption;

• Based on RT-Select, we design the RT-Select-General algorithm for the plat-

forms with more radios.

• We design the Real-Time traffic Balance (RT-Balance) algorithm that bal-

ances the traffic assigned to different radios at runtime to reduce deadline

miss ratio when facing tight deadlines.

• We develop the Real-time Radio Switching and Bundling (RRaSB) system

that runs on our embedded platform equipped with five heterogeneous ra-

dios, selectively makes a subset of radios available at runtime, and allows

dynamic radio switching and bundling among them;

• We implement RT-Select, RT-Select-General, and RT-Balance in RRaSB

and evaluate them experimentally; experimental results show that our RT-

Select and RT-Select-General significantly outperform the baseline (Green-

Bag) and RT-Balance effectively help RT-Select and RT-Select-General re-

duce deadline miss ratios.

The remainder of the chapter is organized as follows. Section 4.2 introduces

56

our problem formulation. Section 4.3 presents the design of RT-Select, RT-Select-

General, and RT-Balance. Section 4.4 describes RRaSB. Section 4.5 presents our

experimental evaluation. Section 4.6 concludes the chapter.

4.2 Problem Formulation

In this section, we formulate the runtime radio selection and data partitioning

for real-time applications as an ILP problem. We first introduce some related

radio characteristics and then define the objective function and constraints of the

ILP problem.

We assume that m radios, R1, ..., Rm, are available on an IoT end device. The

characteristics of each radio Ri(1 ≤ i ≤ m) are separated into two categories:

1. variable characteristics related to the bandwidth and reliability of the wire-

less link between Ri and the IoT gateway:

• throughput, THi, is the maximum number of data packets which Ri is

able to successfully deliver to the IoT gateway per second;

• expected transmission count, ETXi, is the average number of trans-

mission(s) which Ri needs to attempt to successfully deliver a packet

to the IoT gateway.

2. constant characteristics related to energy and time consumption of Ri:

• switching energy, Esw i, is the total energy consumed to switch Ri on

and off1;

1Ri is turned off by default after it transmits all assigned packets if the future traffic demand
is unknown.

57

• switching time, Tsw i, is the time taken to switch Ri on2;

• radio base power, Prb i, is the base power consumed by Ri when the

radio is on and idle;

• per-transmission energy, Eta i, stands for the additional energy con-

sumed by Ri for each packet transmission attempt.

We define the deadline miss ratio as the number of data transfers which are not

completed before their deadlines divided by the total number of data transfers.

Since the deadline miss ratio directly reflects the performance of real-time applica-

tions, we minimize the deadline miss ratio instead of the absolute latency. Thus,

our optimization goal is to minimize the radio energy consumption, while meeting

the data rate and deadline requirements. To achieve the objective, we select the

radio(s) and assign data packets to them. We assume that there are N packets

required to be delivered by deadline D. Let us also assume that Xi packets are

assigned to radio Ri, where 0 < Xi ≤ N if Ri is selected or Xi = 0 if Ri is not

selected. The objective function to minimize is the sender’s energy consumption

E, which is the sum of the radio switching energy, radio base energy, and radio

transmission energy consumed by the selected radios as shown in Eq. 4.1, where

the radio base energy is Prb i multiplied by the transmission time (Xi/THi), the

radio transmission energy is Eta i multiplied by ETXi and Xi, and the set S is

composed of the indices of all selected radios:

min

{∑
i∈S

(Esw i + Prb i ×
Xi

THi

+ Eta i × ETXi ×Xi)

}
(4.1)

2The time taken to switch Ri off is not included since the radio can be turned off after the
deadline if it is not selected for use in the next period.

58

There are three constraints on variable Xi (the number of packets assigned to

Ri): (i) Xi is a non-negative integer not greater than N as specified in Eq. 4.2

(ii) Xi should not exceed the maximum packet delivery capacity of the radio link

(Xmax i) for the deadlineD as stated in Eq. 4.3 and (iii) the total number of packets

assigned to all radios should be equal to N as specified in Eq. 4.4. Therefore, the

following constraints should be met to satisfy the traffic demand and deadline

requirements:

0 ≤ Xi ≤ N (Xi ∈ N) (4.2)

Xi ≤ Xmax i ≡ (D − Tsw i)× THi (4.3)

m∑
i=1

Xi = N (4.4)

In addition, let us introduce a Boolean variable, Yi, to indicate whether or not

the radio Ri is selected. Yi = 1 if Ri is selected (Xi > 0) and Yi = 0 if Ri is not

selected (Xi = 0).

Given Eq. 4.2–4.4, we simplify the objective function E in terms of variables

Xi and Yi as well as coefficients Ai and Bi as follows:

min

(m∑
i=1

[AiYi +BiXi]

)
(4.5)

where

Ai = Esw i

Bi =
Prb i
THi

+ Eta i × ETXi

(4.6)

Eq. 4.2–4.6 form an ILP problem, which is NP-hard.

Many resource-constrained IoT devices cannot afford to execute an ILP solver

59

to solve the problem at runtime for real-time applications. This motivates us to

develop lightweight algorithms tailored for the runtime radio selection and data

partitioning problem.

4.3 Algorithm Design

Algorithm 2: RT-Select

Input : N,D,RC1, RC2

Output: X1, X2

1 Compute Ai, Bi, Xmax i|i = 1, 2 ;
2 (idx 1, idx 2) = sort{Ai +Bi ×N | i = 1, 2} ;
3 (idx 1′, idx 2′) = sort{B1, B2} ;
4 if Xmax (idx 1) ≥ N then
5 Xidx 1 ← N ;
6 else if Xmax (idx 1) < N and Xmax (idx 2) < N then
7 Xidx 1′ ← Xmax (idx 1′) ;
8 if !Conflict() then
9 Xidx 2′ ← N −Xidx 1′ ;

10 end

11 else
12 if Bidx 2 < Bidx 1 or Aidx 1′/(Bidx 2 −Bidx 1′) > Xmax (idx 1′) or

Conflict() then
13 Xidx 2 ← N ;
14 else
15 Xidx 1′ ← Xmax (idx 1′) ;
16 Xidx 2 ← N −Xidx 1′ ;

17 end

18 end

One of the primary design goals of our algorithms is to be time-efficient. With

the consideration of the demand of fast responses, our decision-making strategies

can be processed fast by the IoT devices to guide the runtime radio selection

and data partitioning in response to the current wireless link state and appli-

cation timing requirement. Specifically, we first design the RT-Select algorithm

that optimally solves the two-radio case of the problem and prove its optimal-

ity. Then, based on the insights from the design of RT-Select, we design the

60

RT-Select-General algorithm to solve the general form of the problem involving

m radios. Finally, we design the RT-Balance algorithm that balances the traffic

assigned to different radios at runtime to reduce deadline miss ratio when fac-

ing tight deadlines. All of our algorithms take the inputs of the traffic demand

(i.e., N packets) and the delivery deadline D specified by the application and

the pre-measured radio characteristics. While RT-Select and RT-Select-General

output the radio selection decision, RT-Balance adjusts the traffic assignments

at runtime and outputs the result whether the deadline is met successfully. For

simplicity, we use RCi to represent the characteristics of each radio Ri including

THi, ETXi, Esw i, Tsw i, Prb i and Eta i (see Section 4.2).

Please note that an embedded device may not allow to use some of its radios

simultaneously due to hardware conflicts. For example, the ZigBee and BLE radios

on the TI CC2650 [58] cannot operate simultaneously, since they share a single

DSP modem and a digital PLL. Our algorithms always consider such hardware

conflicts when selecting radios.

4.3.1 RT-Select Algorithm for Selection between Two Radios

Algorithm 2 shows RT-Select algorithm that selects between two radios to

minimize the energy consumption, while meeting the application specified traf-

fic demand and deadline requirements. We have proven the optimality of Al-

gorithm 2 [3]. RT-Select first computes the Ai, Bi, and Xmax i values for both

radios based on Eq. 4.6 and Eq. 4.3 (Line 1). It then sorts the two radios

based on the energy consumption for each radio to transmit N packets by itself

(Ai + Bi × N) and stores the radio indices to (idx 1, idx 2) in ascending order

(Line 2). Therefore, the radio Ridx 1 is more energy-efficient than Ridx 2. Simi-

61

larly, RT-Select sorts the two radios based on the average energy consumption per

packet Bi without considering radio switching energy consumption Ai and stores

the radio indices to (idx 1′, idx 2′) in ascending order (Line 3). Therefore, the

radio Ridx 1′ is more energy-efficient than Ridx 2′ without considering radio switch-

ing energy consumption Ai. The radio hardware conflict checker “Conflict()” gets

the boolean information on whether there is a hardware conflict between the two

radios which prevents them from being used simultaneously. Finally, RT-Select

makes radio selection decisions based on three different cases:

1. if the more energy-efficient radio Ridx 1 can deliver all packets before the

deadline by itself, RT-Select uses Ridx 1 alone and assigns all N packets to

it. (Line 4-5)

2. if none of the radios can deliver all packets before the deadline by itself,

RT-Select attempts to use both radios. First, RT-Select assigns Xmax (idx 1′)

packets to Ridx 1′ . Then, the remaining packets are assigned to the other

radio if there is no hardware conflict between the two radios. (Line 6-10)

3. if only the less energy-efficient radio Ridx 2 can deliver all packets before

the deadline, RT-Select needs to decide whether to use it alone or use both

radios. In case Ridx 2 has the smaller Bi of the two radios or Xmax (idx 1′)

is smaller than Aidx 1′/(Bidx 2 − Bidx 1′)
3, RT-Select uses the less energy-

efficient radio Ridx 2 alone and assigns all N packets to it. If there exists

a hardware conflict between the two radios, Ridx 2 is also used alone to

avoid the conflict. Otherwise, RT-Select selects both radios and assigns

3This comparison decides whether it consumes less energy to use the less energy-efficient
radio alone. The equation comes from the optimality proof in [3].

62

Xmax (idx 1′) packets to Ridx 1′ and the remaining packets to the other radio.

(Line 12-17)

4.3.2 RT-Select-General Algorithm for Selection among Multiple Ra-

dios

Algorithm 3: RT-Select-General

Input : N,D,RC1, RC2, ..., RCm
Output: X1, X2, ..., Xm

1 Compute {Ai, Bi, Xmax i | i = 1, ...,m} ;
2 (idx 1, ..., idx m) = sort{Ai +Bi ×N | i = 1, ...,m} ;
3 (idx 1′, ..., idx m′) = sort{Bi | i = 1, ...,m} ;
4 if Xmax (idx 1) ≥ N then
5 Xidx 1 ← N ;
6 else if max{Xmax (idx i) | i = 1, ...,m} < N then
7 for i = 1 to m do
8 if Conflict(Ridx i′ , {Rk | Xk > 0}) then
9 continue;

10 end
11 if Xmax (idx i′) < N − sum{Xidx k | k < i} then
12 Xidx i′ ← Xmax (idx i′) ;
13 else
14 Xidx i′ ← N − sum{Xidx k | k < i} ;
15 break;

16 end

17 end

18 else
19 for i = 2 to m do
20 if Xmax (idx i) < N then
21 continue;
22 end
23 if Bidx i = Bidx 1′ or Aidx 1′/(Bidx i −Bidx 1′) > Xmax (idx 1′) or

Conflict(Ridx i, Ridx 1′) then
24 Xidx i ← N ;
25 else
26 Xidx 1′ ← Xmax (idx 1′) ;
27 Xidx i ← N −Xidx 1′ ;

28 end
29 break;

30 end

31 end

Based on the insights collected during our algorithm design for the two-radio

63

special case, we design RT-Select-General that solves the general form of the prob-

lem involving m radios. As shown in Algorithm 3, RT-Select-General first com-

putes the Ai, Bi, and Xmax i values for all m radios (Line 1). Similar to RT-Select,

RT-Select-General sorts all m radios based on the energy consumption to trans-

mit N packets for each single radio (Ai + Bi × N) and stores the sorted radio

indices to (idx 1, ..., idx m) in ascending order (Line 2). RT-Select-General sorts

all radios again based on the average energy consumption per packet Bi without

considering radio switching energy consumption Ai and stores the radio indices

to (idx 1′, ..., idx m′) in ascending order (Line 3). The radio hardware conflict

checker “Conflict(Rx, Ry)” gets the boolean information on whether there is a

hardware conflict between the radio Rx and any radio in Ry, where Ry is a set

that consists of one or more radios.

RT-Select-General makes radio selection decisions based on three cases similar

to RT-Select:

1. if the most energy-efficient radio Ridx 1 can deliver all packets before the

deadline by itself, RT-Select-General uses it alone and assigns all N packets

to it. (Line 4-5)

2. if none of the radios can deliver all packets before the deadline by itself,

RT-Select-General has to use multiple radios. Similar to RT-Select, RT-

Select-General prefers to use the radios with small Bis, thus it selects the

radios one by one based on the sorted indices (idx 1′, ..., idx m′) and lets

them transmit with their maximum capacity until the selected radios can

deliver all N packets before the deadline. If there exists a radio hardware

conflict between Ridx i′ and any radio Rk which has already been selected

64

(Xk > 0), the radio Ridx i′ is skipped to avoid the conflict. (Line 6-17)

3. if there exists a radio Ridx i which can deliver all packets before the deadline

by itself but is not the most energy-efficient one (i > 1), then RT-Select-

General needs to decide whether to use it alone or combine it with another

radio4. Inspired by Algorithm 2, we consider the radio Ridx 1′ (the one with

the smallest Bi of all radios) for the possible combination with Ridx i. If Ridx i

has the smallest Bi or Xmax (idx 1′) is smaller than Aidx 1′/(Bidx i − Bidx 1′),

RT-Select-General selects Ridx i only and assigns all packets to it. If there

exists a hardware conflict between Ridx i and Ridx 1′ , Ridx i is also selected

to be used alone. Otherwise, RT-Select-General combines Ridx i with Ridx 1′

and let Ridx 1′ transmit with its maximum capacity and assigns the remaining

packets to Ridx i. (Line 19-30)

The constraints reflecting the hardware conflicts can be added into case 2) and

case 3) of Algorithm 2 and Algorithm 3. RT-Select-General behaves identically

to RT-Select when m = 2, making the latter a special case providing optimal

selections. The time complexity of RT-Select-General is O(m logm) (dominated

by the complexity of sorting), which is acceptable to support real-time decision-

making since m is not expected to be very large in practice (m ≤ 16 today to our

knowledge).

4.3.3 RT-Balance Algorithm for Runtime Traffic Balancing

As discussed in Section 4.3.1 and Section 4.3.2, RT-Select and RT-Select-

General are designed to ensure that all packets can be delivered to their destina-

4We select at most two radios in this case in consideration of designing a light-weight algorithm
for runtime use.

65

(a) WiFi link.

(b) ZigBee link.

Figure 4.1: Throughput prediction errors. The deadline misses are marked in red.

tion by the deadline if they can find feasible radio selection and data partitioning

solutions with the assumption that the actual runtime throughput follows the pre-

dicted value THi. In reality, there does not exist any throughput predictor which

achieves 100% prediction accuracy. To study the impact of inaccurate throughput

prediction, we perform an empirical study. We use Holt-Winter predictor [81],

one of the most effective time series forecasting algorithms, to predict throughput

based on historical measurements, run RT-Select to select radios and partition the

traffic, and record the deadline misses. We observe that a deadline miss occurs

when the traffic assigned to the radio Ri is close to its maximum packet delivery

capacity Xmax i and the actual throughput of the radio Ri is smaller than the

predicted value in that period. Figure 4.1 plots the throughput prediction errors

when both the WiFi and ZigBee radios are selected by RT-Select to transmit 500

66

packets (64KB data) with a deadline of 0.8s. Based on line 7-8 in Algorithm 2,

the traffic assigned to the WiFi radio has about 478 packets, which is very close to

the WiFi radio’s capacity, while only about 22 packets are assigned to the ZigBee

radio. As Figure 4.1(a) shows, the packet deliveries through the WiFi link miss the

deadline in three periods (45s, 95s, and 100s), when the actual throughput mea-

surements are smaller than the predictions by at least 30packets/s. Figure 4.1(b)

shows that the packet deliveries through the ZigBee link always meet the deadline

because the traffic assigned to the ZigBee radio is far below its capacity. From

the results, we can see that the deadline misses occur when the traffic assigned to

a radio is very close to its capacity.

Algorithm 4: RT-Balance

Input : N,D,RC1, ..., RCm
Global Var: seq ← 0

1 Compute {Xmax i | i = 1, ...,m};
2 if

∑m
i=1Xmax i > N then

3 goto RT-Select(-General) ;
4 end
5 for i = 1 to m do
6 if fork() > 0 then
7 continue ;
8 end
9 while seq < N do

10 if isReady (Ri) then
11 Tx (Ri, ++seq) ;
12 end
13 if time() > D then
14 return FAIL ;
15 end

16 end
17 return OK ;

18 end

To address this issue, we reserve a small portion of the predicted throughput

(e.g., 5%) as a guard space, compute Xmax i based on the rest (e.g., 95%), and de-

67

sign a runtime algorithm, namely RT-Balance, which balances the traffic assigned

to different radios. Algorithm 4 shows the RT-Balance algorithm. When facing

tight deadlines, RT-Balance creates a process for each radio that repeatedly trans-

mits a packet when it is ready (Line 5-18). In this way, RT-Balance minimizes the

latency to meet the deadline and achieves natural load balance among the radios.

Specifically, a global variable “seq”, storing the sequence number of the current

packet assigned for transmission, is shared by all processes and initialized as 0.

Algorithm 4 first computes the packet delivery capacity (Xmax i) of each radio Ri

(Line 1), where only the radios without hardware conflict are considered. Then, if

the sum of all radios’ packet delivery capacities is larger than the traffic demand,

RT-Select or RT-Select-General is used to select radios and partition data (Line

2-3). Otherwise, the load balancing is invoked and m child processes are created

for the m radios using “fork()” (Line 5-7). Each child process uses a loop to re-

quest packets for transmission until all packets have been assigned. If there is

any unassigned packet and the radio Ri is ready to transmit, seq is incremented

to be the sequence number of a new packet, which is assigned to the radio Ri

for transmission (Line 9-11). The time that has passed since the program starts

is checked in each loop. If the deadline has passed before all packets have been

transmitted, the child process terminates and indicates that the deadline has been

missed (Line 13-14). Otherwise, the child process finishes after all transmission is

complete (Line 17).

68

4.4 System Design and Implementation

To realize our designs, we develop the RRaSB system that makes multiple ra-

dios available at runtime and allows dynamic radio switching and bundling among

them. Figure 4.2 shows the system architecture. The radio characteristics in-

cluding energy consumption of radio switching (Esw), radio switching time (Tsw),

power consumption when the radio is idle (Prb), and average energy consump-

tion per transmission attempt (Eta) are measured offline and stored in the Radio

Characteristics component, serving as inputs to the radio selection algorithm.

The Throughput Predictor predicts the throughput in the next period based

on the historical data and the Link Quality Predictor estimates the expected

transmission counts (ETX) in the next period based on previous ETX measure-

ments using the Holt-Winters method. If a radio has not been used for a long

time, Link Quality Predictor transmits some probing packets through it to keep

its link quality measurements updated. The Radio Selection Engine takes

radio characteristics, estimated throughput and ETX, and traffic demand and

deadline specified by the application as inputs and runs the radio selection algo-

rithm to select the radio(s) that is/are best suited for the current network traffic

and operating conditions and then assigns packets accordingly. Multiple Radio

Controller modules exist in RRaSB. Each Radio Controller controls the on/off

state of a radio based on the decision made by the Radio Selection Engine and

measures the actual throughput and ETX fed into the Throughput Predictor and

Link Quality Predictor, respectively. RRaSB is configured to perform the radio

selection in each period based on the measured throughput and ETX of the radio

links as well as the traffic demand and deadline specified by the benchmark appli-

69

Figure 4.2: System architecture and the platform supporting five radios.

cation. If the current radio selection is found to be the best-suited, it is retained;

otherwise, our system switches to a new best-suited setting. Radios are turned

off after the last transmission in each period if they are not selected for use in the

next period and the unselected ones are kept off to reduce energy consumption. If

multiple transmitters exist, they access the channel in a TDMA fashion. We have

implemented RRaSB in Raspbian Linux [63] and Contiki [64] and two prototypes:

one with two radios and the other with five radios. A power monitor from Mon-

soon Solutions [62] is connected to the sender to measure the energy consumption.

More implementation details can be found in [3].

4.5 Evaluation

To examine the efficacy of our radio selection and traffic partitioning solu-

tion, we perform a series of experiments on our embedded platform presented in

Section 4.4. We start by demonstrating the time efficiency of RT-Select-General

and the effectiveness of the throughput and link quality predictors. We then run

70

experiments to measure the radio energy consumption and deadline miss ratio

with our prototype hosting two radios and repeat the experiments with five ra-

dios. We compare our approaches against two baselines: GreenBag using GB-E

configuration [11] and GLPK (GNU Linear Programming Kit) [82]. GreenBag is

a practical state-of-the-art radio selection approach designed for real-time appli-

cations. GreenBag supports multi-radio mode and single-radio mode under GB-E

and GB-P configurations. In multi-radio mode, GreenBag seeks to minimize the

transmission time by balancing the load on multiple radios based on link through-

put prediction, while the most energy-efficient radio is selected in single-radio

mode. GB-E chooses single-radio mode to reduce the energy consumption and

switches to multi-radio mode when the bandwidth is insufficient, while GB-P uses

multi-radio mode only. GLPK provides the optimal results to the ILP problems.

Please note that GLPK cannot be used for real-time applications with short dead-

lines because of its heavy computation overhead as presented in Section 4.5.1. We

run GLPK offline and exclude its energy consumption in the results of optimal

solutions (Figure 4.8(a) and 4.9(a)).

In all experiments, we deploy two real-time benchmark applications on top of

our system which generate data packets periodically. The first benchmark appli-

cation (benchmark application A) emulates a health care scenario where doctors

use smart glasses to take ambient pictures or videos of patients and send them to

the hospital information system for real-time face detection and recognition [74].

In this application, a fixed traffic demand is employed by the smart glasses but the

application may specify different deadlines based on its quality of service (QoS)

needs. The second benchmark application (benchmark application B) emulates a

71

Figure 4.3: Execution time of RT-Select-General compared with GreenBag and
GLPK.

Figure 4.4: Throughput and ETX predictions vs. ground truth in a 120-second
WiFi link condition trace.

real-time georeferencing scenario where UAVs capture images of the land from the

air and transmit them together with GPS locations to a ground station [75]. In

this application, a fixed deadline (e.g., 1 second) of image delivery is adopted by

the UAVs to ensure the accuracy of the real-time location but the traffic demand

(image size) may vary to meet different needs. Both benchmark applications gen-

erate periodic traffic whose deadline is equal to its period. The two benchmark

applications allow us to examine the performance of our system (i) at a fixed data

rate with different data delivery deadlines and (ii) at various data rates with a

fixed deadline.

72

4.5.1 Time Efficiency of RT-Select-General

We first measure the execution time of RT-Select-General and two baseline

approaches (GreenBag and GLPK) on the Raspberry Pi 3 with a 1.2 GHz 64-

bit quad-core ARMv8 CPU. We measure the time duration between feeding the

input into the Radio Selection Engine and receiving the output from it. We

repeat the experiments 20 times using random inputs for each m (the number of

radios). Figure 4.3 shows the average execution time of GreenBag, GLPK and

RT-Select-General for different number of radios (m ranging from 2 to 16) in the

logarithmic scale. As Figure 4.3 shows, the average execution time of RT-Select-

General increases from 4µs to 26µs when m increases from 2 to 16, which is slightly

(2∼17µs) longer than what GreenBag uses. The average execution time of GLPK

ranges from 6267µs to 8670µs, which is 336∼1412 times longer than what RT-

Select-General consumes. Therefore, it is not feasible to use the time-consuming

GLPK to support the real-time applications with short deadlines, especially when

running on the platforms with limited harware resources. As a comparison, our

RT-Select-General can time-efficiently make decisions achieving performance close

to what GLPK offers (see Section 4.5.4).

4.5.2 Effectiveness of Link Condition Predictors

We then perform a set of controlled experiment to evaluate the effectiveness of

our Throughput Predictor and Link Quality Predictor employing the Holt-Winters

method. In this set of experiments, we measure the throughput and ETX of radio

links under controlled interference and compare them against the predicted values.

Figure 4.4 plots the example traces showing the throughput and ETX changes of a

73

(a) Energy saving over GreenBag.

(b) Comparison on deadline miss ratio.

Figure 4.5: Performance under RT-Select and GreenBag with two radios when the
application transmits at a fixed data rate with different deadlines.

WiFi link when encountering the controlled interference. An interferer begins the

transmission in the same channel from the 31st second to the 100th second. As

Figure 4.4 shows, the predictions are very close to the measurements during the

process. The standard deviation on the throughput difference is 152 packets/s and

80% of the prediction errors are less than 125 packets/s. The standard deviation

on the ETX difference is 0.25 and 80% of the prediction errors are less than 0.2.

4.5.3 Experiments with Two Radios

We run experiments on our prototype hosting two radios [3] (i.e., the CC2650

ZigBee radio and the RT5370 WiFi radio) to evaluate the effectiveness of RT-

Select and its impact on radio energy consumption and real-time performance.

74

Since the output of RT-Select is proved to be optimal, we only compare RT-Select

against GreenBag in this set of experiments.

We configure the benchmark application A to transmit a 23KB image (480×480

JPEG) in every period and repeat the experiments with 12 different deadlines

ranging from 0.60s to 1.04s according to the response time of Amazon face recog-

nition applications [83]. Figure 4.5(a) shows the energy saving of RT-Select over

GreenBag per period and Figure 4.5(b) plots the deadline miss ratio. RT-Select

shows significant energy saving (ranging from 8mJ to 37mJ5) when the deadline

is greater than 0.64s with the deadline miss ratios no higher than 1%. The energy

savings benefit from RT-Select’s decision on keeping only the WiFi radio active

rather than using both radios suggested by GreenBag. High deadline miss ratios

are observed under both RT-Select and GreenBag when the deadline is shorter

than 0.68s, not enough to turn on the WiFi radio or send all packets using the

ZigBee radio. The results show that RT-Select consistently outperforms GreenBag

under various deadlines.

Similarly, we configure the benchmark application B to transmit a JPEG image

with the fixed deadline (0.80s) in every period, and repeat the experiments with

12 image sizes ranging from 31KB (640×480 JPEG) to 108KB (1280×720 JPEG).

As Figure 4.6(a) and Figure 4.6(b) show, RT-Select consumes 27∼54mJ less en-

ergy compared to GreenBag without missing any deadline when the image size is

between 31KB and 66KB. The energy savings benefit from RT-Select’s decision

on keeping only the WiFi radio active rather than using both radios suggested by

GreenBag. The energy saving is marginal when the image size is 73KB or 80KB.

5As a comparison for energy saving values, the CC2650 radio consumes 30mW power when
transmitting at 5dBm [58].

75

(a) Energy saving over GreenBag.

(b) Comparison on deadline miss ratio.

Figure 4.6: Performance under RT-Select and GreenBag with two radios when the
application transmits at different data rates with the same deadline.

76

This is because both RT-Select and GreenBag decide to use only the WiFi radio

when it becomes the more energy-efficient radio under high traffic demand and

can deliver all data packets by the deadline. When the image size is 87KB, both

RT-Select and GreenBag suggest using both radios. However, RT-Select assigns

94.6% of packets to the WiFi radio and 5.4% to the ZigBee radio and lets WiFi

transmit for the entire period and ZigBee finish early, while GreenBag assigns

85.9% of packets to the WiFi radio and 14.1% to the ZigBee radio and lets both

radios finish their transmissions at the same time, resulting RT-Select consumes

37mJ less energy than GreenBag. High deadline miss ratios are observed under

both RT-Select and GreenBag when the image size is larger than 87KB, beyond

the capacity of two radios with the consideration of radio switching overhead. The

results show that RT-Select always provides the better radio selections on various

data rates.

To evaluate the performance of RT-Balance, we configure the benchmark appli-

cation A to transmit a fix sized image of 64KB with some tight deadlines ranging

from 0.35s to 0.50s. Since the deadlines are very tight, both radios have to keep

active for the entire period. As Figure 4.7(a) and 4.7(b) show, RT-Balance signif-

icantly reduces the deadline miss ratio by 34.5%, 48.9% and 21.7% compared to

RT-Select when the deadlines are 0.40s, 0.45s and 0.50s, respectively. At these

deadlines, RT-Balance only increases the energy consumption by 11mJ , 12mJ and

8mJ per period. The slight increase in energy consumption is in exchange for a

proportionally much-larger reduction in deadline miss ratio. The reduction on the

deadline miss ratio benefits from RT-Balance’s runtime traffic balancing between

the two radios, in contrast to RT-Select and GreenBag which assign packets to

77

(a) Comparison on deadline miss ratio.

(b) Comparison on energy consumption.

Figure 4.7: Performance of GreenBag, RT-Select, and RT-Balance with two radios
when the application transmits at a fixed data rate with different deadlines.

each radio before transmission based on throughput prediction. The deadline miss

ratios are 100% for all approaches when the deadline is 0.35s, which is too short

for the two radios.

4.5.4 Experiments with Five Radios

In this set of experiments, we examine the effectiveness of RT-Select-General

with our prototype device hosting five radios [3]. We compare RT-Select-General

against GreenBag and Optimal.

We first explore RT-Select-General’s performance under a fixed traffic demand

with different deadline requirements. We configure the benchmark application

A to transmit a 109KB image (1280×720 JPEG) in each period and repeat the

experiments with 12 different deadlines ranging from 0.80s to 1.24s. Figure 4.8

78

(a) Comparison on energy consumption.

(b) Comparison on deadline miss ratio.

Figure 4.8: Performance of GreenBag, Optimal and RT-Select-General solutions
with five radios when the application transmits at a fixed data rate with different
deadlines.

79

shows the comparisons on radio energy consumption and deadline miss ratio under

GreenBag, Optimal, and RT-Select-General, respectively. As Figure 4.8(a) and

Figure 4.8(b) show, all three methods suggest using all radios to accommodate

the tight deadlines (i.e., 0.80s and 0.84s). High deadline miss ratios are observed

when the deadline is 0.80s, beyond the capacity of all five radios together when

considering radio switching overhead. When the deadline is larger than 0.84s, RT-

Select-General achieves significant energy savings ranging from 308mJ to 436mJ

compared to GreenBag with the deadline miss ratios no higher than 1%. RT-

Select-General makes the optimal selections for all deadlines except 0.88s and

0.92s. In those two cases, RT-Select-General selects to use the BCM43438 radio

as the secondary radio based on the sorting of Bi (see Section 4.3.2), while Optimal

decides to use the CC2420 radio instead.

We also evaluate RT-Select-General’s performance under various traffic de-

mands with a fixed deadline. We configure the benchmark application B to trans-

mit a JPEG image with a fixed deadline (1.44s) in each period and repeat the

experiments with 12 different image sizes ranging from 109KB (1280×720 JPEG)

to 433KB (1920×1080 JPEG). As Figure 4.9(a) shows, RT-Select-General con-

sistently consumes less energy (298mJ on average) compared to GreenBag and

performs close to what Optimal offers (30mJ difference on average). RT-Select-

General provides optimal selections to nine cases among the 12 cases. Please

note that high deadline miss ratios are observed under all three methods when

the image size is 433KB, beyond the capacities of all radios operating simultane-

ously when considering radio switching overhead. We also perform trace-driven

simulations and observe similar improvements at various combinations of traffic

80

(a) Comparison on energy consumption.

(b) Comparison on deadline miss ratio.

Figure 4.9: Performance of GreenBag, Optimal, and RT-Select-General with five
radios when the application transmits at different data rates with the same dead-
line.

81

demand and deadline [3]. The results demonstrate the effectiveness of RT-Select-

General in reducing the energy consumption, while meeting satisfactory real-time

requirements.

To evaluate the performance of RT-Balance, we configure the benchmark ap-

plication A to transmit a fix sized image of 128KB with tight deadlines ranging

from 0.46s to 0.52s. Since the deadlines are very tight, all five radios have to

keep active for the entire period. As Figure 4.10(a) and Figure 4.10(b) shows, RT-

Balance significantly reduces the deadline miss ratio by 28.6% and 51.4% when the

deadlines are 0.48s and 0.50s, respectively, while only increases the energy con-

sumption by 19mJ and 22mJ per period compared to RT-Select-General. The

slight increase in energy consumption is in exchange for a proportionally much-

larger reduction in deadline miss ratio. The reduction on the deadline miss ratio

benefits from RT-Balance’s runtime traffic balancing between the five radios, in

contrast to RT-Select-General and GreenBag which assign packets to each radio

before transmission based on throughput prediction. The deadline miss ratios are

nearly 100% for all approaches when the deadline is 0.46s, which is too short for

the five radios.

4.5.5 Large-Scale Simulation Study

Relying on the radio characteristics measured on our platform with five radios,

we also perform a large-scale simulation study to measure radio energy consump-

tion and deadline miss ratio at various combinations of traffic demands and dead-

lines. In this set of experiments, we uniformly select 200 image sizes ranging from

94KB (1280×720 JPEG) to 847KB (3840×2160 JPEG) and 200 deadline samples

ranging from 0.8s to 2.6s and then simulate radio energy consumption of running

82

(a) Comparison on deadline miss ratio.

(b) Comparison on energy consumption.

Figure 4.10: Performance of GreenBag, RT-Select-General, and RT-Balance with
five radios when the application transmits at a fixed data rate with different dead-
lines.

(a) RT-Select-General over Optimal. (b) GreenBag over Optimal.

Figure 4.11: Radio energy comparisons with five radios at various combinations
of traffic demands and deadlines. The grey shaded areas denote the invalid com-
binations that the optimal deadline miss ratio is higher than 5%. The colors in
each subfigure denote the percentages of more energy consumed than Optimal,
i.e., (E(RT Select General) − E(Optimal))/E(Optimal) and (E(GreenBag) −
E(Optimal))/E(Optimal), respectively.

83

Optimal, GreenBag, and RT-Select-General, respectively, under all valid combi-

nations of traffic demands and deadlines (optimal deadline miss ratio no higher

than 5%).

Figure 4.11(a) is a heat map plotting the energy consumption difference be-

tween RT-Select-General and Optimal and Figure 4.11(b) shows the difference

between GreenBag and Optimal. The white areas of Figure 4.11(a) shows the

cases (94.4% of deadline and image size combinations) where RT-Select-General

makes the optimal radio selections and traffic partitions. GreenBag only makes

the optimal decisions in 5.4% of combinations, as shown in Figure 4.11(b). The

mean energy consumption difference between RT-Select-General and Optimal is

7.1%, while the difference between GreenBag and Optimal is 60.8%. The sim-

ulation results confirm that RT-Select-General can provide optimal selections to

most cases and significantly outperforms GreenBag under various combinations of

data rates and deadlines.

4.6 Conclusion

Heterogeneous radios are becoming increasingly available in modern embedded

devices, offering new opportunities to use multiple wireless technologies energy-

efficiently to accommodate the needs of real-time applications. We formulate the

runtime radio switching and bundling for real-time IoT applications as an opti-

mization problem and present three algorithms which select radios and partition

data at runtime to minimize the energy consumption for real-time data transfer.

Experimental results show that the proposed solution can significantly reduce the

radio energy consumption over the state of the art, while meeting the application

84

specified traffic demand and deadline requirement.

85

5 Runtime Control of LoRa Spreading Factor for

Campus Shuttle Monitoring

5.1 Introduction

Satellite and cellular technologies are traditionally used to collect real-time

data from running vehicles to the base station through their long-distance links.

For instance, LTE-based communication systems have been integrated into the

urban transit systems [26, 27], while satellite links have been used to support

communication among emergency vehicles [25]. However, such systems are often

costly because they use expensive devices and licensed frequency bands, which

prevents them from being used in many applications. As an emerging Low-Power

Wide-Area Network (LPWAN) technology, LoRa is a low-cost alternative that

can support long-range data collection for low data rate applications [29, 35]. For

a small service area, such as a university campus, LoRa offers a cost-effective

communication solution because one or a few base stations are enough to cover

the area and battery-powered LoRa modules can inexpensively retrofit existing

devices.

In this chapter, we introduce the ShuttleNet, a LoRa-based wireless networking

solution that collects real-time data from shuttles that circle a university campus

using a fixed route. Multiple types of data, such as vehicle speed, the vehicle’s

operating condition, and the number of passengers, are collected to enhance the

86

safety and efficiency of shuttle service and improve rider experience. For instance,

the vehicle speed information is used to estimate the expected time of arrival

(ETA) at each shuttle stop. The number of passengers is used to monitor the

transit demand, which allows more shuttles to be dispatched when needed. Warn-

ings or alarms are generated if the vehicle’s operating condition degrades. The

data needed to be collected falls into one of two categories: time-critical and

non-time-critical. The time-critical data, such as the current vehicle speed and

the number of passengers, needs to be collected in real time with high reliabil-

ity because the data may become useless if it fails to be delivered in time. The

non-time-critical data, such as the data reflecting the vehicle’s operating condition

(e.g., accelerating and braking performance), can be delayed because the operat-

ing condition of a vehicle does not change very frequently. Similar to the tradeoff

between network reliability and throughput in cellular networks [84], the tradeoff

also exists in LoRa networks, which results in a significant challenge on the selec-

tion of the LoRa Spreading Factor (SF). A larger SF provides higher reliability

at the cost of lower throughput and vice versa. The fluctuations of low-power

LoRa link quality resulting from the mobility of vehicles significantly amplify the

challenge. Therefore, there exists a critical need for a new solution that makes

good tradeoffs between network reliability and throughput for LoRa-based mobile

wireless networks.

In this chapter, we present a low-cost LoRa-based networking solution that em-

ploys a novel runtime SF control solution to maximize the data collection through-

put from running vehicles while meeting the reliability requirement specified by

the application. Specifically, we make the following contributions:

87

• We present a low-cost LoRa-based wireless networking solution that collects

real-time data from six shuttles circling our university campus;

• To our knowledge, this is the first solution to investigate the SF selection

for LoRa devices installed on running vehicles, distinguished from previous

work designed for stationary devices. The study has been performed in the

real world for more than a year;

• We provide a practical runtime LoRa SF control solution that employs the

K-Nearest Neighbors (KNN) algorithm and meets network performance re-

quirements with small computation overhead;

• Our experimental results show that our runtime LoRa SF control solution

significantly outperforms the state-of-the-art methods.

The remainder of the chapter is organized as below. Section 5.2 introduces the

background of LoRa. Section 5.3 presents our design of ShuttleNet. Section 5.4

describes our empirical study of LoRa SF configurations. Section 5.5 presents the

design of our runtime SF control solution, and Section 5.6 compares its perfor-

mance against three baselines. Section 5.7 concludes the chapter.

5.2 Background

Recently, LoRa has emerged as a popular LPWAN technology that provides

long-range communication. LoRa employs the Chirp Spread Spectrum (CSS) mod-

ulation, where a LoRa signal, namely a chirp, increases or decreases its operating

frequency linearly through time and circularly sweeps through its predefined fre-

quency band. The time duration of transmitting a chirp depends on the selections

88

of the LoRa physical-layer parameters: SF and Bandwidth (BW). The reliability

of a LoRa link is measured by the Packet Delivery Ratio (PDR), which depends on

the Signal-to-Noise Ratio (SNR) and the Received Signal Strength (RSS) at the

receiver. A larger SF allows the receiver to receive a packet with a lower RSS by

exponentially expanding the duration of each chirp, which results in a lower data

rate. A chirp that uses the SF value of x can represent x bits of data and takes the

time duration of 2x/BW to be transmitted [85]. With a fixed BW , the data rate

of a chirp is proportional to (x ·2−x), which decreases nearly exponentially with x.

There are six SF configurations available in the sub-GHz ISM bands (from SF7

to SF12). The data rates under SF8 to SF12 are 57.1%, 32.1%, 17.9%, 9.8%,

and 5.4% of the one under SF7, respectively. The selection of SF decides the data

rate and communication range of a LoRa link. The LoRa signal that carries a

packet consists of a series of chirps, where the preamble chirps are followed by the

data chirps. The preamble chirps are used by the receiver to identify the start of a

LoRa packet. The data chirps contain up to 255 bytes including the packet header

and payload sections. Both sections end with a Cyclic Redundancy Check (CRC)

code to verify the integrity of the received data. The payload section contains the

data bits with some inserted Hamming Code redundant bits for error correction.

The Coding Rate (CR) of Hamming Code (e.g., “4/5”) is defined as a fraction in

which the numerator is the number of data bits and the denominator is the total

number of data bits and redundant bit(s). The CR setting of a packet is stored

in its header.

LoRaWAN is a Media Access Control (MAC) layer protocol designed for LoRa

and defines three classes: Class A (by default), Class B, and Class C. The Class

89

(a) LoRa base station installed on a roof. (b) LoRa end device installed on a shuttle.

Figure 5.1: Hardware deployment of ShuttleNet at the State University of New
York (SUNY) at Binghamton.

A communication frame is initiated by an end device and consists of an uplink

window (time slot) followed by two downlink windows. To send data, the end

device initiates an uplink window, selects a random channel, and transmits in pure

ALOHA mode [86]. The first downlink window operates on the same channel as

the last uplink window and the second downlink window operates on a predefined

channel [87]. Classes B and C allow downlink data to be received in a timely

fashion by increasing the time that end devices listen to the channel. Class B uses

periodic beacons broadcasted by the base station to open extra downlink windows

at end devices while Class C keeps end devices listening at all times. In many

cases, the communication frames defined in LoRaWAN cannot provide optimal

performance, such as when an application only requires end devices to upload

data, leaving the downlink windows unused. Moreover, theoretically speaking,

the maximum throughput that pure ALOHA can provide is only 18.4% of the

channel capacity [88], which limits the throughput performance of LoRaWAN.

To overcome the limitations, we design new time frame and channel assignment

methods for ShuttleNet (see Section 5.3.3). LoRaWAN specifies the Adaptive

Data Rate (ADR) algorithm that selects SF based on the link quality measured

90

on an end device [37]. Specifically, ADR first estimates the link quality using

the maximum SNR values measured in the last 20 samples and then selects the

SF based on the required SNR level for each SF [38]. Similar to the Class A

frame, the ADR process is initiated by a request from an end device followed by

a response from the base station with a new SF. If the response is not received

by the end device before it times out, the end device increases the SF because the

link is disconnected under the current SF. When an ADR request is received, the

base station reduces the current SF to the most appropriate level if the estimated

SNR is greater than the required SNR plus a safety margin. ADR is designed

for stationary devices and does not work well on mobile devices (see Section 5.4),

which motivates us to design a new runtime SF control solution for ShuttleNet.

5.3 ShuttleNet

In this section, we first present our hardware deployment and software archi-

tecture of ShuttleNet and then introduce our time frame and channel assignment

designs.

5.3.1 Hardware Deployment

ShuttleNet is designed to collect data from six shuttles that circle our university

campus (a 1280m × 990m area) with a fixed route. Figure 5.2 shows the route.

The distance between a shuttle and our LoRa base station can be up to 860

meters. Figure 5.1 shows our hardware deployment. The LoRa base station is

placed in a weatherproof box on the roof of a three-floor building (Figure 5.1(a))

and a LoRa end device is installed in the glove compartment above the driver seat

on each of six shuttles (Figure 5.1(b)). The LoRa base station and end devices

91

Figure 5.2: Campus shuttle route.

are built by integrating commercial off-the-shelf (COTS) devices. The LoRa base

station is an embedded computer (i.e., Raspberry Pi 3 Model B) integrated with

an iC980A module provided by IMST, while the LoRa end device is a Raspberry

Pi computer integrated with an RN2903 module operating in the 900/915 MHz

band [89]. The iC980A module is the enhanced version of iC880A [90] operating

in the 900/915 MHz band. We use iC980A to build our LoRa base station because

it is capable of receiving packets from multiple end devices that use different SF

configurations and up to eight channels in parallel. To maximize throughput,

we configure different LoRa end devices to use distinct channels. The RN2903

module can only operate on a single channel in either transmitter or receiver

mode at each time. Our goal is to provide a low-cost networking solution; thus we

use the RN2903 module to build the LoRa end device. Table 5.1 summarizes the

costs of our devices. Please note that LoRa operates in the free, unlicensed band.

The total hardware cost of ShuttleNet is $536.

92

Table 5.1: Price List of Hardware Components
Device Name Price

(USD)
End De-
vice

Base
Station

Raspberry Pi 3 35
√ √

RN2903 Module 13
√

RPi Connection Bridge 8
√

iC980A Module 130
√

Power Adapter 5
√ √

Total (USD) 536 61 × 6 170

Data
Buffer

TXRX

Application

LoRa Physical Layer

SF Selection
Engine

CH,
SF

LoRa Link

ShuttleNet Base Station ShuttleNet End Device

NM Packet
Generator

Packet
Collector

Transmission
Scheduler

Channel
Assignment

RSS,
SNR

Collected
Data

Reliability
Requirement

LoRa Physical Layer

Transmission
Controller

Command
Interpreter

Application

Time-Critical
Data

Non-Time-
Critical Data

TXRX

Payload

SF
HQ LQ

Figure 5.3: Software architecture of ShuttleNet.

5.3.2 Software Architecture

Figure 5.3 plots the software architecture of ShuttleNet. On the LoRa base sta-

tion, the Packet Collector forwards the received packets from the LoRa physical

layer to the application and collects the link characteristics including RSS and SNR

for the SF Selection Engine. The SF Selection Engine employs our runtime SF

control solution that selects the best-suited SF configuration for each end device

based on the given link characteristics and the reliability requirement specified by

the application (see Section 5.5). The NM Packet Generator broadcasts the

Network Management (NM) packets, which carry the selected SF configuration,

93

the assigned channel, and the transmission schedule for each end device (see Sec-

tion 5.3.3). On each LoRa end device, the Command Interpreter extracts and

interprets the NM commands from the received NM packets. The Transmission

Controller transmits the data generated from the vehicle on the assigned channel

using the selected SF configuration. The Data Buffer maintains two data queues

for the data collected from the vehicle: a high-priority queue (HQ) for time-critical

data and a low-priority queue (LQ) for non-time-critical data. The transmission

controller only transmits the data stored in the LQ when the HQ is empty.

5.3.3 Time Frame and Channel Assignment

In ShuttleNet, the LoRa base station and end devices are time synchronized

and share the notion of a time frame that repeats over time. At the beginning

of each frame, the LoRa base station broadcasts a NM packet that synchronizes

the clocks of all end devices. Each NM packet carries a unique frame ID and the

network management information for this frame (e.g., the SF and channel assigned

to each end device). ShuttleNet uses a fixed channel CHctl for downlinks (from the

base station to shuttles) and assigns channels for uplinks (from shuttles to the base

station) based on the number of shuttles in the network Ns. Assuming the LoRa

base station can receive packets from N channels (CH1 to CHN) in parallel, the

LoRa base station assigns a unique channel CHi (1 ≤ i ≤ N) to each end device

if Ns ≤ N . Otherwise, the LoRa end devices share the N channels in a TDMA

fashion. The NM packets carry the commands indicating which devices should

transmit in each time frame. The LoRa base station always uses the physical

layer parameters (SF = 12, CR = 4/8, and CRC enabled) to transmit the NM

packets because the deliveries of NM packets are critical for maintaining the time

94

Figure 5.4: An example timeline of transmissions on different channels within two
consecutive time frames in ShuttleNet.

frame.

Before a LoRa end device starts to transmit, it first listens to the downlink

channel CHctl and waits for the NM packet. After receiving the NM packet, the

LoRa end device searches for its ID to decide whether it can transmit in this frame.

If the LoRa end device is allowed to transmit, it calculates the number of packets

that can be transmitted in the current frame using the assigned SF configuration.

A small guard time is reserved at the end of each frame to compensate for local

clock drifting. The transmission starts with the time-critical packets followed by

the non-time-critical packets using the assigned channel. After the LoRa end

device finishes the transmissions in the current frame, it listens to CHctl and waits

for the NW packet again. Figure 5.4 shows an example timeline of transmissions

on different channels within two consecutive time frames. In the example, two

LoRa end devices are assigned to use CHi and CHj, respectively. In frame n,

both LoRa end devices transmit using the same SF configuration. In frame n+ 1,

the LoRa end device using CHi is assigned with a smaller SF while the other

using CHj is assigned with a larger SF. As discussed in Section 5.2, a smaller SF

provides higher throughput and allows more packets to be transmitted in a frame.

95

In our implementation, we set the payload size of an uplink packet to 36 bytes,

that of a NM packet to 12 bytes, the frame length to 5 seconds, and the guard

time to 0.25 seconds.

5.4 An Empirical Study on SF Configuration

To investigate the impact of SF configuration on network performance, we

have performed a 14-month empirical study from March 2018 to May 2019. We

configure the LoRa end devices installed on the shuttles to use all six SFs (SF7 to

SF12) for packet transmissions in a round-robin fashion. In other words, a LoRa

end device switches to the next SF after transmitting a packet using the current

SF. The LoRa base station has collected 3.18 million uplink packets generated

by six shuttles during their real-world operations (3931 loops in total). We have

identified all lost packets and their corresponding SFs by checking the sequence

IDs carried by all received packets and discarded all corrupted packets with CRC

errors.

Leveraging our data trace, we first relate SF configuration to network perfor-

mance. Figure 5.5 plots the box plots of the link reliability and throughput when

the LoRa transmitters use different SF configurations. The link reliability in terms

of PDR and the link throughput is computed every 25 minutes. Figure 5.5(a)

and 5.5(b) clearly present the tradeoff between link reliability and throughput

when the LoRa transmitters use different SF configurations. The PDR increases

and the throughput decreases when the LoRa transmitters use a larger SF. Specif-

ically, the median PDRs are 0.38, 0.43, 0.49, 0.56, 0.80, and 0.94, while the median

throughput values are 1.05 kbps, 0.72 kbps, 0.48 kbps, 0.31 kbps, 0.23 kbps, and

96

(a) Box plot of link reliability.

(b) Box plot of link throughput.

Figure 5.5: Link performance when the LoRa transmitters use different SF con-
figurations.

97

(a) Link distance and SNR.

(b) SF selected by ADR and resulting PDR.

Figure 5.6: The link reliability changes under ADR (window = 20,margin =
10dB) when a shuttle circles the campus twice. The grey areas indicate the time
when the shuttle stopped.

0.14 kbps when the LoRa transmitters use SF7, SF8, SF9, SF10, SF11, and

SF12, respectively. More importantly, the link reliability increases more signif-

icantly when the LoRa transmitters use large SFs (SF11 and SF12), while the

link throughput decreases dramatically at small SFs. This indicates that increas-

ing SF when the current SF is large may significantly enhance the link reliability

at the cost of slightly reducing the link throughput, while slightly decreasing SF

when the current SF is small may significantly improve the throughput without

introducing too much damage on the link reliability. Those observations motivate

our designs in Section 5.5.

98

As discussed in Section 5.2, ADR specified in LoRaWAN is designed to select

SF based on the measured link quality. Unfortunately, our empirical study shows

that ADR is ineffective when the LoRa end devices are in motion. For instance,

Figure 5.6 shows the PDR changes when a shuttle circles around the campus

twice. To understand the ineffectiveness of ADR, we install a GPS device onto

that shuttle. Figure 5.6(a) plots the distance and the SNR of the link between the

shuttle and the LoRa base station and Figure 5.6(b) plots the SF configurations

selected by ADR and the resulting PDR over time. The shuttle made five stops

around 0s, 500s, 950s, 1450s, and 1950s during that 2000smeasurement. From the

link distances plotted in Figure 5.6(a), we can observe that the first, third, and fifth

stops are close to the LoRa base station, while the second and fourth stops are far

away. As Figure 5.6(b) shows, ADR provides very good link reliability (almost 1)

by selecting appropriate SFs when the shuttle was not in motion. However, the link

reliability decreases significantly when the shuttle begins to move. For example,

the link reliability drops to 0.21 at 255s and 0.24 at 1195s. From Figure 5.6(b), we

can observe that the SF configurations selected by ADR fluctuate when the shuttle

moves, resulting in unstable link reliability. There are two main reasons that cause

the ADR’s failure to maintain good link reliability when the LoRa end device

moves quickly. First, ADR uses the maximum SNR of the last 20 SNR samples to

estimate the link quality. Although it works well on stationary devices, it fails on

those devices in motion because the SNR changes very fast, as Figure 5.6(a) shows.

This motivates us to consider the most recent link characteristics when selecting

SF (see Section 5.5). Second, ADR uses a set of theoretical SNR thresholds for

SF selection rather than using the actual link reliability measured by the device.

99

time
Initialization Period Operation Period

Initial Data Set

Packet Reception
Observation

SF Selector Selected SF

Wireless
Condition

Application
Reliability

Requirement
Wireless
ConditionSF7

SF8

SF12

SF

Figure 5.7: Initialization Period and Operation Period.

A recent study shows that the best-suited SNR thresholds for SF selection should

be selected based on the specific physical-layer configurations of the LoRa device

(e.g., packet payload length and coding rate) [91]. Moreover, we observe that using

SNR measurements alone is insufficient to accurately predict the packet receptions

because the receiver sensitivity of a LoRa device also depends on the RSS [92].

This motivates us to use both SNR and RSS measurements when selecting SF (see

Section 5.5).

5.5 Runtime SF Control

In this section, we present the design of our runtime SF control solution that

runs on the LoRa base station and selects the SF configuration for each LoRa

end device to meet network performance requirements. The design goal of our

solution is to maximize the data collection throughput while meeting the reliability

requirement specified by the application.

5.5.1 Overview of the Solution

Our design goal is to maximize the data collection throughput while main-

taining the application-specific link reliability by employing best-suited SF con-

100

tinuously. The SF configuration is selected based on the given link reliability

requirement and link characteristics based on a machine learning model. After

a LoRa end device begins to operate, our runtime SF control solution guides it

through two periods: Initialization Period and Operation Period, as shown

in Figure 5.7. In the Initialization Period, our runtime SF control solution con-

trols each LoRa end device to transmit packets using all SF configurations in a

round-robin fashion. It also controls the LoRa base station to measure the link

characteristics when receiving every packet and observes the packet receptions un-

der each SF configuration. This allows the LoRa base station to create the Initial

Data Set S, in which each data element includes three pieces of information:

the link characteristics (RSS, SNR, and the averaged RSS over the last 10 time

frames), the SF configuration, and the packet reception result (success or failure).

We empirically choose the time length of the Initialization Period that provides

the best performance (see Section 5.6.1). After collecting enough data for S, our

runtime SF control solution begins to periodically predict the best-suited SF con-

figuration in the Operation Period based on a non-linear mapping between the

link characteristics (x) and the best-suited SF configuration (sf), i.e., f : x→ sf ,

which is learned by our machine learning model using S. We will next present the

design of our SF selector that runs in the Operation Period.

5.5.2 KNN-based SF Selector

The primary task of the SF selection algorithm is to identify the best-suited SF

in each time frame as described in Section 5.5.1. We define a classification problem

that periodically predicts the packet reception result (success or failure) when

using each SF configuration under the given link characteristics. In each frame,

101

Algorithm 5: KNN-based SF Selection Algorithm

Input : x
Output : sf
Data Set : S
Parameters: k, vt

1 d = 0
2 N = []
3 while N.length < k do
4 X′ = list link conditions (x, d)
5 for x′ in X′ do
6 N.add (S[x′1][x′2][x′3])
7 end
8 d += 1

9 end
10 for sf in [7...11] do
11 vp = 0
12 for n in N do
13 vp += n[sf]
14 end
15 if vp / N.length > vt[sf] then
16 return sf
17 end

18 end
19 sf = 12

102

our solution selects the smallest SF predicted with a successful packet reception

to deliver the maximum throughput. While considering runtime computational

efficiency, we employ the KNN algorithm [43] for classification. We adjust the

parameters in the KNN algorithm at runtime to meet the reliability requirement

(see Section 5.5.3). Algorithm 5 presents our KNN-based SF selection algorithm.

The input of Algorithm 5 includes the link characteristics (x) and the output is the

selected SF configuration for the next frame (sf). x is an array of three integers

(x1, x2, and x3) representing the link characteristics (RSS, SNR, and averaged

RSS). The Initial Data Set S is used to relate the link characteristics to the

packet reception results under each SF configuration. In our implementation, S is

implemented as a 3-D array that uses three array indices for the link characteristics

and each array element is implemented as a linked list, which stores the observed

packet reception results (1 for success and 0 for failure) using all SF configurations.

The parameter k is a constant, which denotes the number of samples to be searched

for in S. Based on the size and density of S, we empirically set k to 20 in our

implementation. The parameter vt is an array, which stores the voting thresholds

for each SF. To simplify our presentation, we assume that all arrays in Algorithm 5

are free of bounds and can be accessed using any integer.

Lines 1 and 2 of Algorithm 5 initialize the distance integer d and the neighbor

sample array N. The loop from Line 3 to Line 9 searches for and stores the “nearest

neighbors” in the array N, where the nearest neighbors are the samples in S within

the shortest distances to the input link characteristics (x). We use the Euclidean

103

distance to measure the distance between x and x′:

d(x,x′) =

√∑
i

(xi − x′i)2 (5.1)

where xi and x′i (i ∈ [1, 2, 3]) are the elements of x and x′. Line 4 lists all integer-

valued link characteristics with the rounded distance (d) to x and stores them in

the set X′. The loop from Line 5 to Line 7 uses the link characteristics in each x′

from X′ as the indices of S and adds all samples from the indexed S elements into

N. The distance d is incremented (Line 8) until k samples have been added to N

(Line 3). All samples with the distance d are used when a tie of distance exists.

KNN uses the votes of the neighbors for classification. The loop from Line 10 to

Line 18 counts the votes for each SF from SF7 to SF11 and returns the selected

SF based on the voting result. For each SF configuration, vp counts the positive

votes from each neighbor n in N, where a neighbor with a successful reception

under the SF (n[sf] = 1) contributes a positive vote (Line 13). The resulting

positive voting rate (vp/N.length) is compared with the voting threshold of the SF

(vt[sf]). If the positive voting rate is greater than the threshold, the classification

result is positive for the SF (Line 15), predicting a successful packet reception.

The algorithm returns with the smallest possible SF when a positive classification

result is found (Line 16). The array of voting thresholds vt is adjusted at runtime

in response to the reliability requirement (see Section 5.5.3). If there is no positive

classification result from SF7 to SF11 or the link characteristics are not available

at the moment, SF12 is selected (Line 19) to maintain the connection.

104

5.5.3 KNN Voting Threshold Adjustment

The array of voting thresholds (vt) is a set of parameters that are critical to

meet the reliability requirement specified by the application. Each element in vt

is a voting threshold for an individual SF because each SF may require a different

threshold to meet the reliability requirement. A higher threshold requires more

positive votes to predict a successful packet reception, which reduces the chance

of false positive predictions.

Algorithm 6: Voting Threshold Adjustment

Inputs : Rr, Rc, Rsf, vt

Output : vt

Parameters: α, β, γ

1 if Rc < Rr then
2 for sf in [7...11] do
3 if Rsf [sf] < Rr then
4 vt[sf] += α
5 end

6 end

7 end
8 if Rc > Rr + γ then
9 for sf in [7...11] do

10 if Rsf [sf] > Rr + γ then
11 vt[sf] -= β
12 end

13 end

14 end

When the system begins to operate, the voting thresholds for SF7 to SF11 are

initialized to 0.5. Algorithm 6 is designed to adjust the voting thresholds and is

triggered when a new PDR measurement is generated or a new reliability require-

ment is input by the application. Given the application reliability requirement

(Rr), the current link PDR (Rc), and an array of PDRs when using each SF con-

figuration (Rsf), there are two options for adjustments: (1) increasing the voting

105

threshold for sf by α if both Rc and Rsf [sf] are less than Rr (Line 1 to 7) and

(2) decreasing the voting threshold for sf by β if both Rc and Rsf [sf] are higher

than Rr + γ (Line 8 to 14). Algorithm 6 keeps the previous voting thresholds if

no change is needed. In our implementation, we set α to 0.1, β to 0.05 which

allows a fast response when the actual reliability fails to meet the requirement

and a slow adjustment when the actual reliability is high. While increasing the

voting thresholds helps increase the link reliability, decreasing the voting thresh-

olds is designed to increase the link throughput because the selector has a greater

chance to select smaller SFs with higher data rates. The value of γ is set to 0.05

in our implementation which aims to maintain the link reliability between Rr and

Rr + 0.05.

5.6 Evaluation

To validate the efficiency of our runtime SF control solution in maximizing the

link throughout while meeting the application-specified reliability requirement,

we performed a series of experiments. We first empirically identify the best-suited

length of the Initialization Period. We then examine whether our solution can con-

sistently meet the reliability requirement specified by the application. We evaluate

our solution’s effect on increasing the data collection throughput, and compare its

performance against three baselines. Finally, we evaluate the runtime efficiency

of our solution by measuring its execution time on a Raspberry Pi computer. To

ensure a fair comparison between our solution and baselines, we apply all solutions

on the same data trace collected from our 14-month empirical study with six shut-

tles (see Section 5.4). We also identify the optimal SF selections by analyzing the

106

Figure 5.8: Performance when using the Initial Data Set with different sizes.
Performance is normalized to the one using the optimal selections.

entire data trace. Please note that the optimal solution cannot be implemented

at runtime and is only for comparison purposes.

5.6.1 Impact of Initialization Period Length

As discussed in Section 5.5.1, our runtime SF control solution first controls

the LoRa end devices installed on the shuttles to use all six SFs (SF7 to SF12)

for packet transmissions in a round-robin fashion to generate the Initial Data Set

S. The network may experience poor reliability and low throughput in the Ini-

tialization Period. Thus, it is beneficial to keep the Initialization Period as short

as possible. We run experiments to study the impact of the length of the Initial-

ization Period on network performance. Figure 5.8 shows the network reliability

and throughput when our runtime SF control solution uses S with different sizes.

All results are normalized to those using the optimal selections. As Figure 5.8

shows, the normalized reliability is very low (0.57) when S has the collected data

when a shuttle traveled the first quarter of its route. After the shuttle traveled the

first half of its route, the normalized reliability increases to 0.92, but the normal-

ized throughput is only 0.72. The normalized throughput increases to 0.87 and

107

(a) Using the initial data collected from different shuttles for Shuttle
A.

(b) Using the initial data collected from different shuttles for Shuttle
B.

Figure 5.9: Performance when using the Initial Data Set collected from one shuttle
on another. Performance is normalized to the one when using the initial data
collected from the same shuttle. The Initial Data Set includes one loop of data.
Rr = 0.8.

the normalized reliability is 0.92 when the shuttle traveled the whole route once.

More data in S does not provide much help on improving the throughput and

reliability. The results show that collecting one loop of data to create the Initial

Data Set is enough for our KNN-based SF selector to provide good SF selections

at runtime.

108

5.6.2 Sharing the Initial Data among Shuttles

We run experiments to explore the feasibility of sharing the Initial Data Set

collected from one shuttle with other shuttles. Figure 5.9 plots the reliability and

throughput performance when using the initial data collected from other shuttles

on Shuttles A and B. The results are normalized to the one when using the initial

data collected from the same shuttle. As Figure 5.9(a) shows, the normalized

reliability ranges from 0.98 to 0.99 when using the initial data collected from

Shuttle B, C, D, E, and F for Shuttle A, while the normalized throughput ranges

from 0.96 to 0.99. Similarly, the normalized reliability and throughput are not

less than 0.94 and 0.97, respectively, when using the initial data collected from

different shuttles for Shuttle B. The absolute reliability is not less than 0.87 and

0.83 when using the initial data collected from different shuttles on Shuttles A and

B, respectively, which meets the reliability requirement specified by the application

(Rr = 0.8). The results show that using the Initial Data Set collected from one

shuttle for other shuttles only slightly degrades the performance of our runtime

SF control solution when the shuttles follow the same route; therefore it is feasible

to share the Initial Data Set among different shuttles, which significantly reduces

the initialization overhead.

5.6.3 Effectiveness of our Runtime SF Control Solution

We perform a series of experiments to examine whether our runtime SF con-

trol solution can consistently meet the reliability requirement specified by the

application. We configure the application to input different reliability (PDR) re-

quirements and measure the actual PDRs at the LoRa base station. Figure 5.10(a)

109

(a) An example data trace of PDR measurements. The application
changes its PDR requirement from 0.8 to 0.9 at the 51st hour. The
PDR measurement is computed in every 1.25 hours.

(b) CDF of PDR measurements.

Figure 5.10: Performance under different application reliability requirements.

110

plots the example PDR measurements collected from a shuttle for more than 100

hours. In this example, the application inputs 0.8 as the PDR requirement at the

beginning of the Operation Period and then changes the requirement to 0.9 at the

51st hour. As Figure 5.10(a) shows, our runtime SF control solution can always

meet the application reliability requirement except for the first measurement. The

slightly lower reliability (0.76) in the first measurement is caused by the voting

threshold adjustments performed at the beginning of the Operation Period. More

importantly, our runtime SF control solution only takes 117 µs to select a new

SF to accommodate the reliability requirement changes issued by the application.

This demonstrates the time efficiency of our SF selections. Figure 5.10(b) plots the

Cumulative Distribution Function (CDF) of PDR measurements under different

application reliability requirements. The PDR measurement is computed every

25 minutes. In more than 95.8% and 90.2% of the time, our runtime SF con-

trol solution provides good SF selections, which successfully meet the application

reliability requirements, 0.8 and 0.9, respectively.

Our runtime SF control solution is designed to maximize the link throughput.

We compare the throughput provided by our solution against three baselines:

ADR+, Probing, and GPS-based. ADR+ is an enhanced version of ADR, which

takes input from the average (instead of maximum) SNR of the last 20 packets

and selects SFs based on the required SNR for each SF configuration [38]. Probing

is a LoRa transmission parameter selection algorithm based on the measured link

Packet Reception Ratio (PRR) [39]. GPS-based is a baseline that we create by

installing GPS devices on the shuttles and using GPS coordinates to select SF

configurations. Figure 5.11 plots the comparisons among four solutions, where all

111

(a) CDF of normalized throughput.

(b) CDF of normalized PDR.

Figure 5.11: Performance comparisons between our solution and three baselines.
Performance is normalized to the one using the optimal selections.

112

Figure 5.12: The execution time of SF selections on a Raspberry Pi computer.

results are normalized to the optimal values. Figure 5.11(a) shows the CDF of

normalized throughput. The median throughput normalized to optimal is 0.58,

0.57, 0.86, and 0.92, when the LoRa base station runs ADR+, Probing, GPS-

based, and our solution, respectively. Figure 5.11(b) shows the CDF of normalized

PDR. The median normalized PDR is 0.66, 0.69, 0.89, and 0.93 when the LoRa

base station runs ADR+, Probing, GPS-based, and our solution, respectively. As

Figure 5.11(a) and 5.11(b) show, our runtime SF control solution consistently

provides the highest throughput and best reliability among all solutions. The

result also indicates that the measured link characteristics can be used reliably

to select good SF configurations and there is no need to install additional GPS

devices which are cost and time inefficient.

5.6.4 Time Efficiency of our Runtime SF Control Solution

Our KNN-based SF selection is designed to be lightweight. We measure the

time duration taken by our KNN-based SF selector to select the best-suited SF

configuration. We record the time of the events when the input is fed into the

selector and the output (i.e., SF configuration) is generated. For this experiment,

113

we repeat the measurement 50,000 times on the Raspberry Pi computer with a

900MHz quad-core ARM CPU and the RAM of 1GB. Figure 5.12 plots the CDF

of the time duration of each run. As Figure 5.12 shows, the median execution

time is 117 µs. 90% and 99% of the SF selections finish within 165 µs and 241 µs,

respectively. These results demonstrate the good time efficiency of our SF selector

as well as the advantage of using the KNN algorithm.

5.7 Conclusion

Satellite and cellular technologies are traditionally used to collect real-time

data from running vehicles to the base station through their long-distance links.

However, such systems are often costly because of their use of expensive devices

and licensed frequency bands, which prevents them from being used in many

application scenarios. As an emerging LPWAN technology, LoRa has been used as

a low-cost alternative that provides capability for long-range data collection to low

data rate applications. In this chapter, we present a low-cost LoRa-based wireless

network, ShuttleNet, that collects real-time data from six shuttles circling our

university campus and has operated in the real world for more than a year. When

implementing ShuttleNet, we find that the selection of LoRa SF poses a significant

challenge because of its effects on two conflicting QoS metrics. To investigate the

impact of SF configuration on network performance, we have performed a 14-

month empirical study. Our empirical study shows that a larger SF provides

higher network reliability at the cost of lower throughput. More importantly,

we observe that the link reliability increases more significantly when the LoRa

transmitters use large SFs (SF11 and SF12), while the link throughput decreases

114

dramatically at small SFs. This indicates that increasing SF when the current SF

is large may significantly enhance the link reliability at the cost of slightly reducing

the link throughput, while slightly decreasing SF when the current SF is small may

significantly improve the throughput without introducing too much damage on the

link reliability. Those observations motivate us to develop a runtime SF control

solution that employs the KNN algorithm to adapt the SF configuration based on

the link characteristics. We compare our solution against three state-of-the-art

baselines and observe that ours consistently provides the highest throughput and

the best reliability among all solutions.

115

6 DIME: Direct Message Dissemination for Industrial

Wireless Networks via Cross-Technology

Communication

6.1 Introduction

Over the past decade, industrial wireless networks have been widely adopted

in industrial facilities to connect sensors, actuators, and controllers. Recent ad-

vancements in radio hardware and embedded platforms have provided battery-

powered wireless modules which are readily available and cost-efficient to build

industrial wireless networks by easily and inexpensively retrofitting existing sen-

sors and actuators without the need to run cables for communication and power.

Research efforts in recent years have proposed autonomous scheduling [51, 52]

and self-configuration [93] solutions for wireless mesh networks based on the IEEE

802.15.4 standard, enabling flexible and scalable deployments of industrial wireless

networks.

Industrial wireless networks have critical demands for reliable and real-time

communication. Failing to achieve those demands may result in degraded pro-

ductivity, extra maintenance cost, or safety hazard. However, those networks

often suffer high network management complexity due to a large number of net-

work nodes and a mesh network topology, posing a significant challenge to achieve

those critical demands. Deliveries of critical network management data, such as

116

time information, control commands, and urgent alerts, may suffer insufficient

reliability and undesirable latency due to hop-by-hop transports. As a result,

the network may take a long time to stabilize the performance at startup and

experience considerable latency for data deliveries in feedback loops.

Emerging Low-Power Wide-Area Network (LPWAN) technologies, such as

LoRa [94], enable one-hop long-distance links as an alternative to multi-hop links,

offering new opportunities to address the high management complexity of indus-

trial wireless networks [21]. However, adding new radio modules may increase the

cost and complexity to deploy and maintain the system. Fortunately, new Cross-

Technology Communication (CTC) techniques have enabled direct messaging from

a LPWAN radio to 802.15.4-based field devices without any hardware change on

the field devices [54, 55]. Using CTC techniques is therefore a promising solution

to overcome the high management complexity of industrial wireless networks by

introducing long-distance links.

In this chapter, we develop the Direct Message Dissemination (DIME) system

that leverages the CTC technique to efficiently time synchronize the wireless de-

vices in the network and enable direct message deliveries through long-distance

links instead of hop-by-hop transports. Specifically, we make the following contri-

butions:

• We extend TSCH and propose DIME-MAC, which is a MAC protocol that

enables direct message dissemination via CTC-based long-distance links;

• We design a scheduling solution that supports direct time synchronization

and direct message deliveries for feedback loops in industrial wireless net-

works;

117

• We deploy DIME on our testbed and reduce the network management com-

plexity of 40 field devices without any hardware modification on the field

devices;

• Our testbed experiments show that DIME significantly improves the end-

to-end reliability, reduces the end-to-end latency, and quickly stabilize the

network performance at startup compared to the state of art.

The remainder of the chapter is organized as follows. Section 6.2 introduces

the background of CTC, TSCH, and transmission scheduling. Section 6.3 present

the design of DIME-MAC and our scheduling solution. Section 6.4 shows the

testbed deployment and evaluation of DIME. Section 6.5 concludes the chapter.

6.2 Background

DIME employs the following technologies and techniques to reduce the man-

agement complexity of industrial wireless networks.

CTC. Recent research efforts have demonstrated various CTC techniques that

support direct message exchange among heterogeneous wireless technologies (e.g.,

WiFi, ZigBee, Bluetooth, and LoRa) operating under the same frequency band.

CTC techniques not only promote the coexistence of heterogeneous wireless tech-

nologies but also expand the features of existing wireless technologies. For in-

stance, the communication range of ZigBee radios can be extended with the CTC

technique that enables direct messaging from LoRa to ZigBee. Shi et al. have

demonstrated that all ZigBee devices on a testbed can detect transmissions from

a single LoRa radio and decode data from the received signal strength (RSS) pat-

terns, significantly extending the communication range covered by a single-hop

118

link [55]. We employ this unique feature of direct messaging from LoRa to ZigBee

to support time synchronization and downlink message deliveries over a large area.

TSCH and Transmission Scheduling. TSCH [50] is a MAC protocol stan-

dardized in IEEE 802.15.4e to provide time-deterministic packet deliveries for

industrial process control and automation. TSCH divides time into timeslots (or

slots) and enables channel hopping in every timeslot. Under TSCH, all network

nodes need to keep globally time synchronized to support time slotted access.

Starting from the coordinator node, each synchronized node shares its time in-

formation to its neighbors by periodically broadcasting Enhanced Beacon (EB).

Contained in EB, the Absolute Slot Number (ASN) indicates the network time

in the term of timeslots. ASN is set to zero when a network starts and increased

by one at the end of each timeslot. Timeslots are grouped into slotframes which

appear periodically every LSF timeslots, where LSF is called slotframe length. A

timeslot in a slotframe is specified by the time offset (to), the channel offset (co),

and the type of operation (e.g., transmission, reception, or sleep). The time offset

(to) of a timeslot is represented by the modulo operation between ASN and LSF :

to = mod(ASN,LSF) (6.1)

A sequence of channels used for channel hopping, called Frequency Hopping Se-

quence (FHS), is known by all nodes. The frequency channel used in a timeslot is

determined by FHS, ASN, the channel offset (co), and the length of FHS (LFHS):

channel = FHS(mod(ASN + co, LFHS)) (6.2)

119

A TSCH schedule determines a node’s operation type and channel offset in each

timeslot. Recent research efforts have proposed autonomous scheduling schemes

(such as Orchestra [51] and ALICE [52]), where each node maintains its sched-

ule automatically based on its local state of the routing protocol, without the

need of a centralized scheduler or inter-node schedule negotiation. Although us-

ing autonomous scheduling in TSCH can enhance the scalability of the network,

there still exists the high complexity issue of network management. Deliveries of

critical network management data, such as time information, control commands,

and urgent alerts, may suffer insufficient reliability and undesirable latency due

to hop-by-hop transports. To solve this issue, we leverage the CTC technique to

extend the TSCH MAC protocol and improve the reliability and latency perfor-

mance in autonomously scheduled networks by reducing the network management

complexity.

6.3 Design of DIME

6.3.1 System Overview

The goal of DIME is to enable the direct message dissemination from the root

node to the field nodes in mesh wireless networks for synchronization and downlink

messaging as an efficient alternative to hop-by-hop transports. In the design of

DIME, the application data is transferred through one or more data flows in the

network, where each data flow contains a feedback loop from the source node to

the destination node. The source node generates the application packets, which

are forwarded by the the relay nodes to the root node using the 802.15.4-based

multi-hop link. The root node dispatches the feedback packets to the destination

120

Figure 6.1: Software architecture of DIME.

node via both the CTC-based direct link and the 802.15.4-based multi-hop link.

Figure 6.1 describes the software architecture of DIME on the root node and the

field nodes. On both types of nodes, DIME-MAC is the MAC layer protocol that

keeps the synchronization of the network and maintains the time schedule for each

node to transmit and receive. Also, a routing protocol based on RPL maintains

a routing table on each node and forwards packets between the application layer

and the MAC layer. Furthermore, there are components designed specifically for

the root node and the field nodes.

The root node. The root node is equipped with two radios of different types: the

main 802.15.4 radio and a secondary radio (LoRa in our deployment), where the

main radio features the 802.15.4 physical layer while the secondary radio functions

as a CTC transmitter to support the direct long-distance links from the root node

to the field nodes. The SysTime Controller is periodically activated by DIME-

MAC to update the current system time. The application layer generates Direct

Messages for downlink deliveries. The CTC encoder encodes the system time and

121

Figure 6.2: The structure of a CTC timeslot.

Direct Messages into CTC transmission patterns. The CTC transmitter transmits

the encoded system time and Direct Messages at dedicated timeslots under the

transmission control of DIME-MAC.

The field nodes. Each field node is equipped with a single 802.15.4 radio,

which not only features the 802.15.4 physical layer but also functions as the CTC

Receiver. The CTC Receiver is activated by DIME-MAC at dedicated timeslots

to detect CTC transmissions, which is then decoded by the CTC Decoder. The

SysTime Extractor obtains the current system time from the decoded message

and input the time information to DIME-MAC. The decoded Direct Messages are

fed into the application layer.

6.3.2 DIME-MAC

DIME uses a MAC protocol named DIME-MAC which is extended from TSCH.

DIME-MAC inherits timeslots and slotframes from TSCH, where timeslots are

grouped into slotframes that repeat over time.

CTC Timeslots. DIME-MAC introduces a new type of timeslots called CTC

timeslots, which are dedicated for direct message deliveries via CTC-based long-

distance links. The unique feature of CTC timeslots is that the end of each times-

lot is marked by the end of the CTC transmission, which can be used for direct

and accurate time synchronization. The structure of CTC timeslots is defined in

122

Figure 6.2, where TxOffset, RxOffset, and RxWait are three timing parameters

inherited from TSCH. The CTC transmission starts at TxOffset, which is a time

offset determined by the time duration of the CTC transmission to make sure

that the CTC transmission ends at the end of the timeslot. TxOffset should be

no less than the recommended value in TSCH (e.g., 3ms for 15ms timeslots) to

make CTC transmissions tolerable to the clock drifts on field devices. The re-

ceiver starts listening to the channel at RxOffset and keeps listening for the start

of a valid CTC message for the duration of RxWait. If the receiver detects no

CTC message started in this duration, it skips the reception and goes to sleep;

otherwise, it continues the reception till the end of the CTC transmission. There

is no acknowledgement performed in CTC timeslots because they are designed to

broadcast. The CTC coding space, i.e., the set of the different values that can be

encoded in a CTC timeslot, is limited by the CTC physical layer and the timeslot

length. The coding space can be divided into subsets for different purposes, such

as time synchronization and application messages.

Direct Synchronization. As discussed in Section 6.2, TSCH uses EB for time

synchronization. DIME-MAC replaces EB with Direct Beacon (DB) to synchro-

nize the network directly and allow new nodes to join the network. Similar to EB,

DB also contains time information and is broadcasted periodically. Unlike EB is

broadcasted by all nodes in the network, DB is only transmitted by the root node

via CTC-based long-distance links, reducing the network management complexity

for time synchronization. In DIME-MAC, all field nodes consider the root node

as their time source and periodically listen to DB to keep synchronized. Each

DB transmission is encapsulated in a CTC timeslot. When a DB transmission is

123

finished, all field nodes use the ending time of that timeslot to synchronize their

local clocks. DB carries the current Synchronization Period Number (SPN) to

indicate the absolute time since the network starts. SPN is initialized as 0 and

incremented by 1 after each time it is transmitted. SPN can be encoded in two

or more consecutive DB transmissions, where the last DB transmission contains a

special label that indicates the end of SPN. Assume there are SDB possible values

in DB’s coding space, each SPN is encoded in NDB DB transmissions, and the

period of DB transmissions is TDB. Then, the maximum time Tmax that can be

represented by SPN using DB is

Tmax = TDB ×NDB × (SDB − 1)NDB−1 (6.3)

For example, if SDB = 8, NDB = 10, and TDB = 6 s, then Tmax is more than 76

years. Based on the received SPN, field nodes can calculate the current ASN by

ASN = SPN × TDB ×NDB (6.4)

Joining the Network. There are two ways for a new node to join the network:

joining at the network initialization or when the network is operating. At the

network initialization, the CTC transmitter continuously broadcasts beacons with

a constant pattern for a short period of time (e.g., 30 s) before the network starts

to operate, allowing all field nodes to adjust their CTC physical layer parameters

(e.g., the RSSI threshold) based on the link measurements in this period. If a new

node joins when the network is operating, it uses the default CTC physical layer

124

parameter and listens for DB transmissions to obtain a complete SPN and calculate

the current ASN based on the SPN. When joining at network initialization, there

is no need to obtain the SPN since it is known to start from 0.

6.3.3 Scheduling of DIME

The goal of scheduling is to determine each node’s operation type and channel

offset in each timeslot. DIME adopts the scheduling scheme of Orchestra with the

properties of timeslots and slotframes. DIME schedules timeslots based on three

types of concurrent slotframes used for synchronization, routing, and application

traffic, respectively. The schedules of all slotframes are combined into a single

schedule at runtime. Each slotframe has a priority level that determines whether

to use or yield a timeslot when encountering a conflict during the combination

with the other slotframes. The lengths of all slotframes are mutually prime to

minimize the schedule conflicts.

DB Slotframe: The slotframe with the highest priority is dedicated to DB trans-

missions for time synchronization. The only active timeslot scheduled per DB

slotframe is a CTC slot for DB transmission, where the time offset (to) is 0 and

the operation channel is fixed to the best one (we choose channel 26). The root

node broadcasts DB and every field node listens to DB in this CTC slot. We use

LDBSF = 397 slots as the default length of DB slotframes.

RPL Slotframe: The slotframe for RPL routing has the second priority. One

common shared (CS) timeslot is scheduled per RPL slotframe for RPL broadcast

messages, where the time offset (to) is 0 and the channel offset (co) is 1. We use

31 slots as the default length of RPL slotframes.

Application Slotframe: The slotframe for application traffic has the lowest pri-

125

ority among the three slotframe types. The application slotframe has two possible

phases – the uplink phase followed by the optional downlink phase. The slotframe

can be configured with the uplink phase alone if the downlink phase is not re-

quired. The uplink phase assigns every field node with a sender-based dedicated

(SBD) slot to collect application data (e.g., sensing data) from the source nodes

to the root node, while the the downlink phase assigns every field node with a

receiver-based dedicated (RBD) slots to deliver application feedback data (e.g.,

actuation commands) from the root node to the destination nodes. In the uplink

phase, every node listens to its child nodes (if any) and transmits uplink data (if

any) in its SBD slot. The time offset of each SBD slot (tSBDo) is calculated by

the modulo operation between the sender node ID (txID) and the length of the

uplink phase (LUP):

tSBDo (txID) = mod(txID,LUP) (6.5)

Based on Eq. 6.5, each node calculates its uplink transmitting slot using its own

node ID and calculates its uplink receiving slot(s) using its child node ID(s). After

the uplink phase, the downlink phase begins with a CTC slot, in which the root

node groups the downlink data for all destination nodes into a CTC transmission. 1

The time offset of the CTC slot (tCTCo) equals LUP since it follows the uplink phase.

All destination nodes listen to that CTC slot and decode their data if successfully

received. After the CTC slot, every node on each downlink path (the path from the

root node to the destination node) listens in its RBD slot and transmits downlink

data (if any) to its child node on the path until the destination node is reached.

The time offset of each RBD slot (tRBDo) is calculated by the receiver node ID

1We assume that the downlink data for all destination nodes can be grouped into one CTC
slot because of the small size of typical downlink application data (such as actuation commands).

126

(rxID), LDP , and the length of the downlink phase (LDP):

tRBDo (rxID) = mod(rxID,LDP − 1) + LUP + 1 (6.6)

Based on Eq. 6.6, each node on the downlink paths calculates its downlink re-

ceiving slot using its own node ID and calculates its downlink transmitting slot(s)

using its child node ID(s) on all downlink paths. The channel offset (co) of the

application slotframe is fixed to 2. To ensure contention-free transmissions in

both uplink and downlink phases, both LUP and LDP should be greater than

the maximum node ID in the network. We choose LUP = 50, LDP = 51, and

LAPPSF = LUP + LDP = 101 as the default lengths in our deployment with 40 field

nodes.

6.4 Evaluation

In this section, we present extensive experiments on our testbed with DIME

and Orchestra to demonstrate the unique benefits of DIME in reducing the network

management complexity and improving the network performance under different

data rates.

6.4.1 Experimental Setup

We run experiments on our testbed consisting of 40 field devices and a root

device in an office environment. Each field device is a TelosB mote and the root

device is a TelosB motes bundled with a 2.4 GHz LoRa module. We configure 8

data flows on our testbed, where each data flow configured with a source node and

a destination node. The relay nodes forward packets on the uplink and downlink

127

Figure 6.3: Testbed deployment with 8 data flows. The data flow numbers are
marked at the source and destination nodes.

paths, where the uplink paths are configured by RPL at runtime and the downlink

paths are preset as static ones due to the memory limit of TelosB motes. Figure 6.3

shows the device deployment on our testbed with different types of nodes on each

data flow.

We configure DIME and Orchestra with four concurrent slotframes – one syn-

chronization, one routing, and two application slotframes. We use the default

slotframe lengths and settings for the synchronization and routing slotframes in

both DIME and Orchestra. The slotframe lengths of the two application slot-

frames are set to 101 and 103 slots. Among the two application slotframes, the

slotframe with 101 slots has a higher priority and is configured with the default

uplink and downlink phases, while the slotframe with 103 slots has a lower priority

and is configured with the uplink phase only. Orchestra is configured to use the

same schedule of the application slotframes as DIME but skip the CTC timeslot

in the downlink phase. In our deployment, the length of a timeslot is set to 15ms.

128

We configure the experiments as a real-time sensing-actuating application,

where each source node generates an uplink packet at a random time within the

data generation period that repeats over time. After the root node receives an

uplink packet, it generates a downlink packet to be delivered to the destination

node of the same data flow.

The evaluated performance metrics include end-to-end packet delivery ratio

(PDR), end-to-end latency, and radio duty cycle. For a given data flow, the end-

to-end PDR is the ratio of the number of packets received by the destination node

to the number of packets transmitted by the source node. The end-to-end latency

is the time duration between the uplink packet transmission at the source node

and the downlink packet reception at the destination node. The radio duty cycle

is the percentage of timeslots in which the radio is on, indicating the radio energy

consumption.

6.4.2 Performance at High Data Rate

We first run DIME and Orchestra for 24 hours to measure end-to-end PDR

and end-to-end latency under a high data rate setting, where the data generation

period is 10s at the source nodes. Figure 6.4 and Figure 6.5 summarize our results.

Figure 6.4(a) shows the end-to-end PDR of each data flow, where DIME

achieves the PDR above 99.5% in all data flows, outperforming Orchestra which

has the lowest PDR of 91.8% at data flow 7. Figure 6.4(b) shows the average

end-to-end latency of each data flow, where DIME achieves the latency no higher

than 4.23 seconds and significantly reduces the latency compared to Orchestra.

For instance, the average end-to-end latency of data flow 3 is 3.36 seconds un-

der DIME and 11.58 seconds under Orchestra. Figure 6.4(c) plots the CDF of

129

(a) End-to-end PDR.

(b) End-to-end latency.

(c) Radio duty cycle of field nodes.

Figure 6.4: Performance comparison under the high data rate setting.

130

the radio duty cycle of all field nodes under DIME and Orchestra, where the two

approaches deliver similar performance. The radio duty cycle ranges from 3.46%

to 6.78% under DIME and ranges from 3.26% to 6.75% under Orchestra. The

median radio duty cycle is 4.61% under DIME and 4.69% under Orchestra. These

results clearly demonstrate the benefits of DIME on improving the reliability and

reducing the latency without the overhead of increased radio duty cycle.

Figure 6.5 compares the performance of the entire network under DIME and

Orchestra over 24 hours, where each data point shows the performance within the

duration of one hour. As Figure 6.5(a) shows, the end-to-end PDR keeps above

99.3% under DIME and fluctuates between 90.2% and 93.7% under Orchestra. As

Figure 6.5(b) shows, the end-to-end latency keeps less than 3.61s under DIME and

varies between 8.23s and 10.54s under Orchestra. On average, DIME improves the

end-to-end PDR from 92.6% to 99.8% and reduces the end-to-end latency from

9.03s to 3.06s compared to Orchestra. These results show that DIME constantly

outperforms Orchestra over a long time of operation at the high data rate.

6.4.3 Performance at Low Data Rate

We also run DIME and Orchestra for 24 hours under a low data rate setting,

where the data generation period is 60s. Figure 6.6 and Figure 6.7 summarize our

results.

Figure 6.6(a) shows the end-to-end PDR of each data flow, where DIME and

Orchestra achieve the PDR above 99.93% and 99.52%, respectively. Figure 6.6(b)

shows the average end-to-end latency of each data flow, where DIME reduces

the latency by 6.53s on average compared to Orchestra. For instance, the end-

to-end latency of data flow 6 is 1.57s under DIME and 11.42s under Orchestra.

131

(a) End-to-end PDR.

(b) End-to-end latency.

Figure 6.5: Network performance over 24 hours under the high data rate setting.

132

(a) End-to-end PDR.

(b) End-to-end latency.

(c) Radio duty cycle of field nodes.

Figure 6.6: Performance comparison under the low data rate setting.

133

Figure 6.6(c) plots the CDF of the radio duty cycle of all field nodes under DIME

and Orchestra, where the two approaches deliver similar performance. The median

duty cycle is 4.44% under DIME and 4.48% under Orchestra. These results clearly

demonstrate the benefits of DIME on improving the reliability and reducing the

latency without the overhead of increased radio duty cycle.

Figure 6.7 compares the performance of the entire network under DIME and

Orchestra over 24 hours. As Figure 6.7(a) shows, DIME achieves the PDR of

99.7% at the first hour and always delivers 100% PDR after the first hour, while

Orchestra experiences the lowest PDR of 96.9% at the first hour and achieves

the PDR above 98.8% after that. As Figure 6.7(b) shows, DIME always keeps

the latency less than 2.82s, while Orchestra experiences the latency up to 10.45s.

These results show that DIME constantly outperforms Orchestra over a long time

of operation at the low data rate.

6.4.4 Performance at Network Initialization

To observe the network performance at startup, we measure end-to-end PDR

and end-to-end latency of all application packets within the first 600s after all

devices initially start and operate under the high data rate setting using DIME

and Orchestra, respectively. Figure 6.8 shows the network performance over time,

where each data point indicates the performance in a 30s duration. As shown in

Figure 6.8(a) and Figure 6.8(b), DIME’s performance stabilizes quickly with the

PDR always above 91.7% and the latency less than 4.84s. On the other hand,

Orchestra experiences the lowest PDR of 54.2% and the latency up to 37.87s at

the beginning of operation. Compared to Orchestra, DIME saves at least 300s at

startup to operate reliably and stably. DIME’s better performance at startup is

134

(a) End-to-end PDR.

(b) End-to-end latency.

Figure 6.7: Network performance over 24 hours under the low data rate setting.

135

(a) End-to-end PDR.

(b) End-to-end latency.

Figure 6.8: Network performance at startup.

benefit from the direct synchronization of all nodes in the network, which reduces

the network management complexity.

6.5 Conclusion

Industrial wireless networks often suffer high network management complexity

due to a large number of network devices and a mesh network topology. To

mitigate the management complexity of industrial wireless networks, we develop

the DIME system that leverages the CTC technique to efficiently synchronize the

network and enable direct message delivery through long distance links instead

136

of hop-by-hop transports. Testbed experiments show that DIME significantly

improves the end-to-end PDR, reduces the end-to-end latency, and saves time at

startup to stabilize the network performance compared to Orchestra.

137

7 Conclusion

Various wireless technologies are readily available to support communication

between devices in IoT applications. However, it is very challenging to achieve

reliable and efficient data transfer through wireless medium due to its inherent

unreliability. The data transfer challenge is significantly amplified by a number

of factors that exist in IoT applications, including the uncertainties of network

traffic and wireless environment, the real-time requirement of data delivery, the

mobility of IoT platforms, and the management complexity of industrial wireless

networks. Fortunately, heterogeneous radios and new wireless technologies are

becoming increasingly available on modern IoT devices, offering new opportunities

to address the data transfer challenge.

To adapt to the uncertainties of network traffic and wireless environment, we

develop the ARTPoS system that leverages multiple heterogeneous radios and

selects the most suitable radio(s) and transmission power(s) for the current condi-

tions and requirements. Experimental results show that ARTPoS can save more

than 100mW of power consumption over fixed-power and single-radio solutions

under various network traffic and wireless environment, while maintaining satis-

factory link reliability. To support real-time data deliveries energy-efficiently, we

develop the RRaSB system that runs on our embedded platform equipped with

multiple heterogeneous radios and allows dynamic radio switching and bundling

138

among them based on our real-time radio selection and data partitioning algo-

rithms. Experimental results show that RRaSB significantly outperforms Green-

Bag by reducing more than 300mJ of energy consumption in the real-time transfer

of 109KB data under various deadlines, while meeting satisfactory real-time re-

quirements. To support mobile IoT platforms, we develop the ShuttleNet system

that collects real-time data from running vehicles based on the LPWAN technology

and controls the network’s physical-layer parameters at runtime. Real-world ex-

periments show that ShuttleNet increases the data collection throughput by 58.6%

and improves the network reliability by 27.0% compared to the existing methods.

To mitigate the management complexity of industrial wireless networks, we de-

velop the DIME system that leverages the CTC technique to efficiently synchronize

the network and enable direct message delivery through long distance links instead

of hop-by-hop transports. Testbed experiments show that DIME significantly im-

proves the end-to-end PDR from 92.6% to 99.8%, reduces the end-to-end latency

from 9.03s to 3.06s, and saves 300s at startup to stabilize the network performance

at the high data rate compared to the state of the art.

139

Bibliography

[1] D. Mu et al. “Adaptive Radio and Transmission Power Selection for Internet

of Things”. In: ACM/IEEE International Symposium on Quality of Service

(IWQoS). 2017.

[2] Di Mu et al. “Robust Optimal Selection of Radio Type and Transmission

Power for Internet of Things”. In: ACM Transactions on Sensor Networks

(TOSN) 15.4 (2019).

[3] Di Mu et al. “Energy-Efficient Radio Selection and Data Partitioning for

Real-Time Data Transfer”. In: IEEE International Conference on Distributed

Computing in Sensor Systems (DCOSS). 2019.

[4] Di Mu et al. “Radio Selection and Data Partitioning for Energy-Efficient

Wireless Data Transfer in Real-Time IoT Applications”. In: Ad Hoc Net-

works 107 (2020).

[5] Di Mu et al. “Runtime Control of LoRa Spreading Factor for Campus Shut-

tle Monitoring”. In: IEEE International Conference on Network Protocols

(ICNP). 2020.

[6] Karim Habak, Khaled A Harras, and Moustafa Youssef. “Bandwidth Aggre-

gation Techniques in Heterogeneous Multi-homed Devices: A Survey”. In:

Computer Networks 92.1 (2015), pp. 168–188.

140

[7] Internet Engineering Task Force. RFC 6824 - Multipath TCP. 2013. url:

https://tools.ietf.org/html/rfc6824.

[8] Ashkan Nikravesh et al. “An In-depth Understanding of Multipath TCP on

Mobile Devices: Measurement and System Design”. In: Proceedings of the

22nd Annual International Conference on Mobile Computing and Network-

ing. MobiCom ’16. New York City, NY, USA: ACM, 2016, pp. 189–201.

[9] Mohammad Javad Shamani, Weiping Zhu, and Saeid Rezaie. “On the Energy

Inefficiency of MPTCP for Mobile Computing”. In: International Conference

on Wired/Wireless Internet Communication (WWIC). 2016.

[10] Cheng-Lin Tsao and Raghupathy Sivakumar. “On Effectively Exploiting

Multiple Wireless Interfaces in Mobile Hosts”. In: Proceedings of the 5th

International Conference on Emerging Networking Experiments and Tech-

nologies. CoNEXT ’09. Rome, Italy: ACM, 2009, pp. 337–348.

[11] Duc Hoang Bui et al. “GreenBag: Energy-efficient Bandwidth Aggregation

For Real-time Streaming in Heterogeneous Mobile Wireless Networks”. In:

Proceedings of the 34th IEEE Real-Time Systems Symposium. RTSS ’13.

Vancouver, BC, Canada: IEEE, 2013, pp. 57–67.

[12] Shan Lin et al. “ATPC: Adaptive Transmission Power Control for Wireless

Sensor Networks”. In: ACM Transactions on Sensor Networks 12.1 (2016),

pp. 6–19.

[13] Shan Lin et al. “Towards Stable Network Performance in Wireless Sensor

Networks”. In: Proceedings of the 30th IEEE Real-Time Systems Symposium.

RTSS ’09. Washington, DC, USA: IEEE, 2009, pp. 227–237.

141

[14] Gregory Hackmann, Octav Chipara, and Chenyang Lu. “Robust Topol-

ogy Control for Indoor Wireless Sensor Networks”. In: Proceedings of the

6th ACM Conference on Embedded Network Sensor Systems. SenSys ’08.

Raleigh, NC, USA: ACM, 2008, pp. 57–70.

[15] Yong Fu et al. “Practical Control of Transmission Power for Wireless Sensor

Networks”. In: Proceedings of the 20th IEEE International Conference on

Network Protocols. ICNP ’12. Austin, TX, USA: IEEE, 2012, pp. 1–10.

[16] Martin Burkhart et al. “Does Topology Control Reduce Interference?” In:

Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc

Networking and Computing. MobiHoc ’04. Roppongi Hills, Tokyo, Japan:

ACM, 2004, pp. 9–19.

[17] Yan Gao, Jennifer C Hou, and Hoang Nguyen. “Topology Control for Main-

taining Network Connectivity and Maximizing Network Capacity under the

Physical Model”. In: Proceedings of the 27th Conference on Computer Com-

munications. INFOCOM ’08. Phoenix, AZ, USA: IEEE, 2008, pp. 1013–

1021.

[18] Yeon-sup Lim et al. “Design, Implementation, and Evaluation of Energy-

Aware Multi-Path TCP”. In: Proceedings of the 11th ACM Conference on

Emerging Networking Experiments and Technologies. CoNEXT ’15. Heidel-

berg, Germany: ACM, 2015, p. 30.

[19] Ana Nika et al. “Energy and Performance of Smartphone Radio Bundling in

Outdoor Environments”. In: Proceedings of the 24th International Confer-

ence on World Wide Web. WWW ’15. Florence, Italy: ACM, 2015, pp. 809–

819.

142

[20] Jiyan Wu et al. “Energy-Efficient Bandwidth Aggregation for Delay-Constrained

Video over Heterogeneous Wireless Networks”. In: IEEE Journal on Selected

Areas in Communications 35.1 (2017), pp. 30–49.

[21] Chaojie Gu et al. “One-Hop Out-of-Band Control Planes for Low-Power

Multi-Hop Wireless Networks”. In: IEEE Conference on Computer Com-

munications (INFOCOM). 2018.

[22] Romain Jacob et al. “End-to-End Real-Time Guarantees in Wireless Cyber-

Physical Systems”. In: IEEE Real-Time Systems Symposium (RTSS). 2016.

[23] Tianyu Zhang et al. “FD-PaS: A Fully Distributed Packet Scheduling Frame-

work for Handling Disturbances in Real-Time Wireless Networks”. In: IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS).

2018.

[24] Chengjie Wu et al. “Real-Time Wireless Routing for Industrial Internet

of Things”. In: IEEE/ACM International Conference on Internet-of-Things

Design and Implementation (IoTDI). 2018.

[25] Giuliana Iapichino et al. “Advanced Hybrid Satellite and Terrestrial Sys-

tem Architecture for Emergency Mobile Communications”. In: International

Communications Satellite Systems Conference (ICSSC). 2008.

[26] Tao Tang et al. “Field Test Results Analysis in Urban Rail Transit Train

Ground Communication Systems of Integrated Service Using LTE-M”. In:

IEEE International Conference on Intelligent Transportation Systems (ITSC).

2016.

143

[27] Arwa Khayat et al. “LTE Based Telecommunication System for Urban-

Guided Transports”. In: Transport Research Arena (TRA). 2014.

[28] Shanzhi Chen et al. “Vehicle-to-Everything (V2X) Services Supported by

LTE-Based Systems and 5G”. In: IEEE Communications Standards Maga-

zine 1.2 (2017).

[29] Md Tamzeed Islam, Bashima Islam, and Shahriar Nirjon. “Duty-Cycle-

Aware Real-Time Scheduling of Wireless Links in Low Power WANs”. In:

IEEE International Conference on Distributed Computing in Sensor Systems

(DCOSS). 2018.

[30] Jansen C Liando et al. “Known and Unknown Facts of LoRa: Experiences

from a Large-Scale Measurement Study”. In: ACM Transactions on Sensor

Networks 15.2 (2019).

[31] José Santa et al. “LPWAN-Based Vehicular Monitoring Platform with a

Generic IP Network Interface”. In: Sensors 19.2 (2019).

[32] Ricardo Salazar-Cabrera, Álvaro Pachón de la Cruz, and Juan Manuel Madrid

Molina. “Proof of Concept of an IoT-Based Public Vehicle Tracking System,

Using LoRa (Long Range) and Intelligent Transportation System (ITS) Ser-

vices”. In: Journal of Computer Networks and Communications (2019).

[33] Takuya Boshita, Hidekazu Suzuki, and Yukimasa Matsumoto. “IoT-Based

Bus Location System Using LoRaWAN”. In: IEEE International Conference

on Intelligent Transportation Systems (ITSC). 2018.

144

[34] Pengxin Guan et al. “A Real-Time Bus Positioning System Based on LoRa

Technology”. In: IEEE International Conference on Smart Grid and Smart

Cities (ICSGSC). 2018.

[35] Silvano Bertoldo et al. “Feasibility Analysis of a LoRa-Based WSN Using

Public Transport”. In: Applied System Innovation 1.4 (2018).

[36] Ange Ouya et al. “An Efficient Electric Vehicle Charging Architecture Based

on LoRa Communication”. In: IEEE International Conference on Smart

Grid Communications (SmartGridComm). 2017.

[37] LoRaWAN Adaptive Data Rate. url: https://www.thethingsnetwork.

org/.

[38] Mariusz Slabicki, Gopika Premsankar, and Mario Di Francesco. “Adaptive

Configuration of LoRa Networks for Dense IoT Deployments”. In: IEEE/IFIP

Network Operations and Management Symposium (NOMS). 2018.

[39] Martin Bor and Utz Roedig. “LoRa Transmission Parameter Selection”. In:

IEEE International Conference on Distributed Computing in Sensor Systems

(DCOSS). 2017.

[40] Muhammad Asad Ullah et al. “K-Means Spreading Factor Allocation for

Large-Scale LoRa Networks”. In: Sensors 19.21 (2019).

[41] Silvia Demetri et al. “Automated Estimation of Link Quality for LoRa: a

Remote Sensing Approach”. In: ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN). 2019.

145

[42] Norhane Benkahla et al. “Enhanced ADR for LoRaWAN Networks with Mo-

bility”. In: IEEE International Wireless Communications & Mobile Comput-

ing Conference (IWCMC). 2019.

[43] Padraig Cunningham and Sarah Jane Delany. “k-Nearest Neighbour Classi-

fiers”. In: Multiple Classifier Systems 34.8 (2007).

[44] Feng Yu et al. “5G WiFi Signal-Based Indoor Localization System Using

Cluster k-Nearest Neighbor Algorithm”. In: International Journal of Dis-

tributed Sensor Networks 10.12 (2014).

[45] Azin Arya, Philippe Godlewski, and Philippe Mellé. “Performance Analysis

of Outdoor Localization Systems Based on RSS Fingerprinting”. In: Inter-

national Symposium on Wireless Communication Systems (ISWCS). 2009.

[46] Wenchao Li et al. “A New Intrusion Detection System Based on KNN Clas-

sification Algorithm in Wireless Sensor Network”. In: Journal of Electrical

and Computer Engineering (2014).

[47] Liqiang Pan and Jianzhong Li. “K-Nearest Neighbor Based Missing Data

Estimation Algorithm in Wireless Sensor Networks”. In: Wireless Sensor

Network 2.02 (2010).

[48] Brad K Donohoo et al. “Context-Aware Energy Enhancements for Smart

Mobile Devices”. In: IEEE Transactions on Mobile Computing 13.8 (2013).

[49] Yunqian Ma. “Improving Wireless Link Delivery Ratio Classification with

Packet SNR”. In: IEEE International Conference on Electro/Information

Technology (EIT). 2005.

146

[50] IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH). url: https://

datatracker.ietf.org/doc/html/rfc7554.

[51] Simon Duquennoy et al. “Orchestra: Robust Mesh Networks through Au-

tonomously Scheduled TSCH”. In: ACM Conference on Embedded Networked

Sensor Systems. 2015.

[52] Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim. “ALICE: Autonomous

Link-based Cell Scheduling for TSCH”. In: International Conference on In-

formation Processing in Sensor Networks. 2019.

[53] Junyang Shi, Mo Sha, and Zhicheng Yang. “DiGS: Distributed Graph Rout-

ing and Scheduling for Industrial Wireless Sensor-Actuator Networks”. In:

IEEE International Conference on Distributed Computing Systems (ICDCS).

2018.

[54] Junyang Shi, Di Mu, and Mo Sha. “LoRaBee: Cross-Technology Communi-

cation from LoRa to ZigBee via Payload Encoding”. In: IEEE International

Conference on Network Protocols (ICNP). 2019.

[55] Junyang Shi, Xingjian Chen, and Mo Sha. “Enabling Direct Messaging from

LoRa to ZigBee in the 2.4 GHz Band for Industrial Wireless Networks”. In:

IEEE International Conference on Industrial Internet (ICII). 2019.

[56] Mo Sha et al. “Self-Adapting MAC Layer for Wireless Sensor Networks”.

In: Proceedings of the 34th IEEE Real-Time Systems Symposium. RTSS ’13.

Vancouver, BC, Canada: IEEE, 2013, pp. 192–201.

[57] Michael P Andersen, Gabe Fierro, and David E Culler. “System Design for

a Synergistic, Low Power Mote/BLE Embedded Platform”. In: Proceedings

147

of the 5th ACM/IEEE International Conference on Information Processing

in Sensor Networks. IPSN ’16. Vienna, Austria: IEEE, 2016, pp. 1–12.

[58] TI.com. CC2650 SimpleLink Multi-Standard 2.4 GHz Ultra-Low Power Wire-

less MCU. 2016. url: http://www.ti.com/product/CC2650.

[59] Raspberry Pi. Raspberry Pi 3 Model B. 2016. url: https://www.raspberrypi.

org/products/raspberry-pi-3-model-b/.

[60] CompuLab Ltd. IOT-GATE-iMX7 - Industrial Internet of Things Gateway.

2018. url: https://www.compulab.com/products/iot-gateways/iot-

gate-imx7-nxp-i-mx-7-internet-of-things-gateway/.

[61] Ruogu Zhou et al. “ZiFi: Wireless LAN Discovery via ZigBee Interference

Signatures”. In: Proceedings of the 16th Annual International Conference on

Mobile Computing and Networking. MobiCom ’10. Chicago, Illinois, USA:

ACM, 2010, pp. 49–60.

[62] Monsoon Solutions. LVPM Product Documentation. 2014. url: https://

www.msoon.com/lvpm-product-documentation.

[63] Raspbian. Welcome to Raspbian. 2012. url: https://www.raspbian.org/.

[64] Contiki. Contiki Operating System. 2018. url: https : / / github . com /

contiki-os/contiki/.

[65] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of Three

Methods for Selecting Values of Input Variables in the Analysis of Output

from a Computer Code”. In: Technometrics 21.2 (1979), pp. 239–245. issn:

00401706. url: http://www.jstor.org/stable/1268522.

148

[66] Jeong-Soo Park. “Optimal Latin-hypercube Designs for Computer Experi-

ments”. In: Journal of Statistical Planning and Inference 39.1 (1994), pp. 95–

111.

[67] R Tyrrell Rockafellar and Johannes O Royset. “Engineering Decisions un-

der Risk Averseness”. In: ASCE-ASME Journal of Risk and Uncertainty in

Engineering Systems, Part A: Civil Engineering 1.2 (2015), p. 04015003.

[68] Jianmin Jia and James S Dyer. “A standard measure of risk and risk-value

models”. In: Management Science 42.12 (1996), pp. 1691–1705.

[69] R Tyrrell Rockafellar and Stanislav Uryasev. “Conditional Value-at-risk for

General Loss Distributions”. In: Journal of Banking & Finance 26.7 (2002),

pp. 1443–1471.

[70] Giuseppe Cardillo. Four Parameters Logistic Regression - There and Back

Again. online. Apr. 2013.

[71] Michael Junger et al., eds. 50 Years of Integer Programming 1958-2008:

From the Early Years to the State-of-the-Art. Heidelberg, Germany: Springer,

2009. Chap. Nonlinear Integer Programming. isbn: 978-3-540-68279-0.

[72] Carlo Alberto Boano et al. “Jamlab: Augmenting Sensornet Testbeds with

Realistic and Controlled Interference Generation”. In: International Confer-

ence on Information Processing in Sensor Networks. IPSN ’11. Chicago, IL,

USA: ACM, 2011.

[73] MEMSIC. TELOSB MOTE PLATFORM. 2014. url: http://www.memsic.

com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf.

149

[74] J. Ruminski et al. “Interactions with Recognized Patients Using Smart

Glasses”. In: IEEE International Conference on Human System Interactions

(HSI). 2015.

[75] C. Eling, L. Klingbeil, and H. Kuhlmann. “A Direct Georeferencing System

for Real-Time Position and Attitude Determination of Lightweight UAVs”.

In: FIG Working Week. 2015.

[76] J. Lynch, C. Rarrar, and J. Michaels. “Structural Health Monitoring: Tech-

nological Advances to Practical Implementations”. In: Proceedings of the

IEEE, Special Issue on Structural Health Monitoring 104.8 (2016), pp. 1508–

1512.

[77] Hoa Hong Nguyen et al. “A Review on IoT Healthcare Monitoring Appli-

cations and a Vision for Transforming Sensor Data into Real-Time Clinical

Feedback”. In: IEEE International Conference on Computer Supported Co-

operative Work in Design (CSCWD). 2017.

[78] Chenyang Lu et al. “Real-Time Wireless Sensor-Actuator Networks for In-

dustrial Cyber-Physical Systems”. In: Proceedings of the IEEE, Special Issue

on Industrial Cyber Physical Systems 104.5 (2015), pp. 1013–1024.

[79] T. Watteyne et al. “Industrial Wireless IP-Based Cyber Physical Systems”.

In: Proceedings of the IEEE, Special Issue on Industrial Cyber Physical Sys-

tems 104.5 (2016), pp. 1025–1038.

[80] LX IoT Cores. url: https://lx-group.com.au/iot-cores/.

[81] Prajakta S Kalekar. “Time Series Forecasting Using Holt-Winters Exponen-

tial Smoothing”. In: Kanwal Rekhi School of Information Technology (2004).

150

[82] GNU Linear Programming Kit (GLPK). url: https://www.gnu.org/

software/glpk/.

[83] Analyzing Performance for Amazon Rekognition Apps. url: https://aws.

amazon.com/blogs/compute/analyzing- performance- for- amazon-

rekognition-apps-written-on-aws-lambda-using-aws-x-ray/.

[84] Beatriz Soret et al. “Fundamental Tradeoffs among Reliability, Latency and

Throughput in Cellular Networks”. In: IEEE Globecom Workshops. 2014.

[85] LoRa Modulation Basics. url: https://www.semtech.com/.

[86] Ferran Adelantado et al. “Understanding the Limits of LoRaWAN”. In:

IEEE Communications Magazine 55.9 (2017).

[87] François Delobel, Nancy El Rachkidy, and Alexandre Guitton. “Analysis

of the Delay of Confirmed Downlink Frames in Class B of LoRaWAN”. In:

IEEE Vehicular Technology Conference (VTC Spring). 2017.

[88] Affan A Syed et al. “Understanding Spatio-Temporal Uncertainty in Medium

Access with ALOHA Protocols”. In: Proceedings of Workshop on Underwa-

ter Networks (WuWNet). 2007.

[89] RN2903 Provided by MICROCHIP. url: https://www.microchip.com/

wwwproducts/en/RN2903.

[90] iC880A Provided by IMST. url: https://www.wireless-solutions.de/

products/radiomodules/ic880a.html.

[91] Orion Afisiadis et al. “On the Error Rate of the LoRa Modulation with

Interference”. In: Transactions on Wireless Communications (2019).

151

[92] Semtech. SX1272 Datasheet. url: https://www.semtech.com/products/

wireless-rf/lora-transceivers/sx1272.

[93] Junyang Shi and Mo Sha. “Parameter Self-Configuration and Self-Adaptation

in Industrial Wireless Sensor-Actuator Networks”. In: IEEE Conference on

Computer Communications (INFOCOM). 2019.

[94] LoRa. url: https://lora-alliance.org.

152

